跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴易聖
研究生(外文):Yi-Sheng Lai
論文名稱:利用聚胺酯增韌聚乳酸之研究
論文名稱(外文):Studies on Toughening of Polylactic Acid by Melt-blending with Polyurethane
指導教授:謝國煌謝國煌引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:129
中文關鍵詞:生物可分解聚乳酸聚胺酯高分子混摻增韌
外文關鍵詞:BiodegradablePLAPUPolymer blendsToughening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以六種不同之聚酯型二元醇與己二異氰酸酯(HDI)反應合成聚胺酯,並將合成後之聚胺酯與聚乳酸進行混摻,藉以改善聚乳酸之韌性及延展性,並藉由改變二元醇之種類及分子量,探討混摻物之機械性質、熱性質、混摻相容性、結晶性質及拉伸斷裂面之型態,藉以瞭解聚胺酯增韌聚乳酸的結果與機制。由微差掃瞄熱卡計分析(DSC)之結果,發現混摻物有兩個Tg存在,且分別很接近原本PU與PLA之Tg,顯示其為不相容混摻系統。即使只在PLA中混摻10%之PU,斷裂伸長率仍有明顯之上升,且抗張強度亦有所提升,顯示PU對PLA有良好之增韌效果。但若PU的含量比例超過30%以上,PLA與PU間的巨觀相分離會更明顯,因此混摻物的機械性質會大幅下降。PU的結晶度與結晶速率為影響混摻物機械性質的重要因素,PU的結晶性越好,則拉伸過程中應力硬化的效果越明顯,因此混摻物的機械性質越佳。本研究以最簡便的熔融混摻法,成功地利用可分解的聚酯型聚胺酯增韌聚乳酸,且不影響聚乳酸原有之抗張強度與耐熱性,可望大幅提升聚乳酸的應用性,為極具潛力之生物可分解材料。
To toughen polylactic acid (PLA), biodegradable polyurethanes (PUs) synthesized from different types and molecular weights of polyol were melt-blended with the PLA. Mechanical properties, thermal properties, crystalline properties, morphology of fracture surfaces, and toughening mechanism of the blends were compared and discussed. The blends were characterized as an immiscible system for their individual glass transition temperatures in the differential scanning calorimeter (DSC) test. The elongation at break was significantly increased even though only 10% PU was added to the PLA, indicating the toughening effect of the PU on the PLA. The tensile strength was also increased when 10% PU added. But the tensile strength and elongation at break were lower for the PU content more than 30% because of the macro-phase separation. The mechanical properties of the PLA/PU blends were influenced by the crystallinity and crystallization speed of the PU. The blends were more flexible and tough materials and necking formation was observed during the tensile test.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII

第一章 緒論 1
第二章 文獻回顧 3
2-1 可分解塑膠之發展與種類 3
2-2 生物可分解高分子 4
2-2.1 生物可分解高分子之種類 5
2-2.2 生物可分解材料之測試規範 6
2-3 聚乳酸 8
2-3.1 聚乳酸之發展 8
2-3.2 乳酸之介紹及生產 9
2-3.3 聚乳酸之合成 10
2-3.4 聚乳酸的生命週期評估分析 11
2-3.5 聚乳酸的分解 13
2-4 聚胺酯 14
2-4.1聚胺酯之簡介 14
2-4.2 聚胺酯組成與性質之關係 15
2-4.3 聚胺酯的分解 17
2-5 高分子混摻 18
2-5.1 高分子混摻的加工方法 18
2-5.2 高分子混摻之相容性 20
2-5.3 高分子混摻之熱力學理論 21
2-5.4 相容性混摻物之玻璃轉移溫度 22
2-6 聚乳酸之混摻改質 24
2-6.1 聚乳酸與小分子塑化劑之混摻 25
2-6.2 聚乳酸與高分子之混摻 27
2-7 高分子之機械性質 31
2-7.1 應力-應變曲線與定義 32
2-7.2 屈服與冷拉現象 33
2-8 研究目標 34
第三章 實驗 42
3-1 實驗藥品 42
3-2 實驗儀器 45
3-3 材料製備方法 48
3-3.1 實驗流程大綱 48
3-3.2 TPU合成步驟 49
3-3.3 材料之混摻 52
3-4 材料性質分析與測試條件 53
3-4.1 傅立葉轉換紅外線光譜(FTIR)測試 53
3-4.2 微差掃描熱卡計(DSC)分析測試 53
3-4.3 應力-應變性質測試 53
3-4.4 撕裂性質測試 54
3-4.5 X光繞射(XRD)性質測試 54
3-4.6 掃描式電子顯微鏡(SEM)分析 54
第四章 結果與討論 55
4-1 PU合成與FTIR分析 55
4-2 微差掃瞄熱卡計(DSC)分析 56
4-2.1 PLA/PUPBA系列混摻之DSC分析 56
4-2.2 PLA/PUPEA系列混摻之DSC分析 57
4-2.3 PLA/PUPCL系列混摻之DSC分析 58
4-2.4 DSC分析之結果討論 58
4-3 應力-應變分析 59
4-3.1 PLA/PUPBA系列混摻之應力-應變分析 59
4-3.2 PLA/PUPEA系列混摻之應力-應變分析 61
4-3.3 PLA/PUPCL系列混摻之應力-應變分析 62
4-3.4 應力-應變分析結果與討論 64
4-4 撕裂性質分析 64
4-5 X光繞射(XRD)分析 66
4-5.1 PLA/PUPBA系列混摻之XRD分析 66
4-5.2 PLA/PUPEA系列混摻之XRD分析 67
4-5.3 PLA/PUPCL系列混摻之XRD分析 68
4-5.4 XRD分析結果與討論 68
4-6掃描式電子顯微鏡(SEM)分析 69
4-7 PLA/PUPBA2000/Starch混摻 70
第五章 結論 122
參考文獻 124
1.行政院環境保護署網站資料 http://www.epa.gov.tw/ch/DocList.aspx?unit=24&clsone=501&clstwo=178&clsthree=172&busin=4177&path=9540.
2.美國環境保護協會(USEPA)網站資料 http://www.epa.gov/epaoswer/nonhw/muncpl/facts.htm.
3.Reddy, C. S. K.; Ghai, R.; Rashmi; Kalia, V. C. Bioresource Technology 2003, 87, 137-146.
4.中華民國環保生物可分解材料協會網站 http://www.ebpa.org.tw/.
5.Gross, R. A.; Kalra, B. Science 2002, 297, 803-807.
6.日本生物可分解塑膠研究會著 圖解生物可分解塑膠 (蕭志強譯); 世茂出版有限公司: 台北縣新店市, 2006.
7.Steinbüchela, A.; Valentin, H. E. FEMS Microbiology Letters 1995, 128, 219-228.
8.尤浚達 生物可分解高分子 - 聚乳酸之應用與發展潛力評估; 工業技術研究院 產業經濟與資訊服務中心: 新竹縣, 2003.
9.Doi, Y.; Steinbüchel., A. Biopolymers: vol.4 Polyesters III - Applications and Commercial Products; WILEY-VCH: Weinheim, 2002.
10.Lunt, J. Polymer Degradation and Stability 1998, 59, 145-152.
11.Fukushima, K.; Sogo, K.; Miura, S.; Kimura, Y. Macromolecular Bioscience 2004, 4, 1021.
12.Vaidya, A. N.; Pandey, R. A.; Mudliar, S.; Kumar, M. S. Critical Reviews in Environmental Science and Technology 2005, 35, 429-467.
13.Auras, R.; Harte, B.; Selke, S. Macromolecular Bioscience 2004, 4, 835-864.
14.Gupta, B.; Revagade, N.; Hilborn, J. Progress in Polymer Science 2007, 32, 455-482.
15.Cui, Y. D.; Liao, L. W.; Kang, Z. Fine Chemicals 1999, 16, 13-16.
16.Drumright, R. E.; Gruber, P. R.; Henton, D. E. Advanced Materials 2000, 12, 1841-1846.
17.Cicero, J. A.; Dorgan, J. R.; Garrett, J.; Runt, J.; Lin, J. S. Journal of Applied Polymer Science 2002, 86, 2839-2846.
18.Perego, G.; Cella, G. D.; Bastioli, C. Journal of Applied Polymer Science 1996, 59, 37-43.
19.Tsuji, H. Macromolecular Bioscience 2005, 5, 569-597.
20.江玄政 環保資訊月刊,第五十七期: 生命週期評估應用之介紹; 財團法人豐泰文教基金會 新竹縣, 2003.
21.Vink, E. T. H.; Ra´bago, K. R.; Glassner, D. A.; Gruber, P. R. Polymer Degradation and Stability 2003, 80, 403-419.
22.Ho, K.-L. G.; III, A. L. P.; Hinz, P. N. Journal of Environmental Polymer Degradation 1999, 7, 83-92.
23.Kale, G.; Auras, R.; Singh, S. P. Packaging Technology and Science 2007, 20, 49-70.
24.Urayama, H.; Kanamori, T.; Kimura, Y. Macromolecular Materials and Engineering 2002, 287, 116-121.
25.Saunders, J. H.; Frisch, K. C. Polyurethane: Chemistry and Technology, Part I, Chemistry; Interscience Publishers: New York, 1997.
26.Chen, K. S.; Yu, T. L.; Chen, Y. S.; Lin, T. L.; Liu, W. J. Journal of Polymer Research 2001, 8, 99-109.
27.Oertel, G. Polyurethane Handbook; Hanser Publishers: New York, 1985.
28.Xiu, Y.; Wang, D.; Hu, X.; Ying, S.; Li, J. Journal of Applied Polymer Science 1993, 48, 867-869.
29.Pandya, M. V.; Deshpande, D. D.; Hundiwale, D. G. Journal of Applied Polymer Science 1988, 35, 1803-1815.
30.Cho, J. W.; Jung, Y. C.; Chun, B. C.; Chung, Y.-C. Journal of Applied Polymer Science 2004, 92, 2812-2816.
31.Yen, M. S.; Cheng, K. L. Journal of Applied Polymer Science 1994, 52, 1707-1717.
32.Kylma, J.; Seppala, J. V. Macromolecules 1997, 30, 2876-2882.
33.Skarja, G. A.; Woodhouse, K. A. Journal of Applied Polymer Science 2000, 75, 1522-1534.
34.Lligadas, G.; Ronda, J. C.; Galia, M.; Ca´diz, V. Biomacromolecules 2007, 8, 686-692.
35.Darby, R. T.; Kaplan, A. M. Applied Microbiology 1968, 16, 900-905.
36.Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakahara, T. Applied Microbiology and Biotechnology 1999, 51, 134-140.
37.Huang, S. J.; Nacri, C.; Roby, M.; Benedict, C.; Cameron, J. A. ACS Symposium Series 1981, 172, 471.
38.Kim, Y. D.; Kim, S. C. Polymer Degradation and Stability 1998, 62, 343-352.
39.Harris, J. E.; Robeson, L. M. Journal of Applied Polymer Science 1988, 35, 1877-1891.
40.Kim, W. N.; Burns, C. M. Journal of Applied Polymer Science 1990, 41, 1575-1593.
41.Zhang, L.; Deng, X.; Zhao, S.; Huang, Z. Polymer International 1997, 44, 104-110.
42.Flory, P. J. Principle of Polymer Chemistry; Cornell University Press: New York, 1953.
43.Sperling, L. H. Introduction to Physical Polymer Science; 3rd ed.; John Wiley ﹠Sons: New York, 2001.
44.Rodriguez-Parada, J. M.; Percec, V. Macromolecules 1986, 19, 55-64.
45.Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Polymer Reviews 2008, 48, 85-108.
46.Mascia, L.; Xanthos, M. Advanced in Polymer Technology 1992, 11, 237-248.
47.Labrecque, L. V.; Kumar, R. A.; Dave, V.; Gross, R. A.; Mccarthy, S. P. Journal of Applied Polymer Science 1997, 66, 1507-1513.
48.Ljungberg, N.; Wesslen, B. Journal of Applied Polymer Science 2002, 86, 1227-1234.
49.Martin, O.; Averous, L. Polymer 2001, 42, 6209-6219.
50.Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Journal of Applied Polymer Science 2003, 90, 1731-1738.
51.Piorkowska, E.; Kulinski, Z.; Galeski, A.; Masirek, R. Polymer 2006, 47, 7178-7188.
52.Broz, M. E.; VanderHart, D. L.; Washburn, N. R. Biomaterials 2003, 24, 4181-4190.
53.Lopez-Rodriguez, N.; Lopez-Arraiza, A.; Meaurio, E.; Sarasua, J. R. Polymer Engineering and Science 2006, 46, 1299-1308.
54.Hiljanen-Vainio, M.; Varpomaa, P.; Seppala, J.; Tormala, P. Macromolecular Chemistry and Physics 1996, 197, 1503-1523.
55.Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Volpe, M. G. Macromolecular Rapid Communications 1999, 20, 236-238.
56.Semba, T.; Kitagawa, K.; Ishiaku, U. S.; Kotaki, M.; Hamada, H. Journal of Applied Polymer Science 2006, 103, 1066-1074.
57.Wang, L.; Ma, W.; Gross, R. A.; McCarthy, S. P. Polymer degradation and stability 1997, 59, 161-168.
58.Shibata, M.; Inoue, Y.; Miyoshi, M. Polymer 2006, 47, 3557-3564.
59.Bhatia, A.; Gupta, R. K.; Bhattacharya, S. N.; Choi, H. J. Korea-Australia Rheology Journal 2007, 19, 125-131.
60.Lee, S.; Lee, J. W. Korea-Australia Rheology Journal 2005, 17, 71-77.
61.Liu, X.; Dever, M.; Fair, N.; Benson, R. S. Journal of Environmental Polymer Degradation 1997, 5, 225-235.
62.Jiang, L.; Wolcott, M. P.; Zhang, J. Biomacromolecules 2006, 7, 199-207.
63.Nijenhuis, A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer 1996, 37, 5849-5857.
64.Anderson, K. S.; Lim, S. H.; Hillmyer, M. A. Journal of Applied Polymer Science 2003, 89, 3757-3768.
65.Eguiburu, J. L.; Iruin, J. J.; Fernandez-Berridi, M. J.; Roman, J. S. Polymer 1998, 39, 6891-6897.
66.Gajria, A. M.; Dave, V.; Gross, R. A.; McCarthy, S. P. Polymer 1996, 37, 437-444.
67.Pezzin, A. P. T.; Ekenstein, G. O. R. A. v.; Zavaglia, C. A. C.; Brinke, G. t.; Duek, E. A. R. Journal of Applied Polymer Science 2003, 88, 2744-2755.
68.Liu, T.-Y.; Lin, W.-C.; Yang, M.-C.; Chen, S.-Y. Polymer 2005, 46, 12586-12594.
69.Yuan, Y.; Ruckenstein, E. Polymer Bulletin 1998, 40, 485-490.
70.Li, Y.; Shimizu, H. Macromolecular Bioscience 2007, 7, 921-928.
71.胡德 高分子物理與機械性質(下); 渤海堂文化事業有限公司: 台北市, 1990.
72.Peterlin, A. Journal of Materials Science 1971, 6, 490-508.
73.Ohkita, T.; Lee, S.-H. Journal of Adhesion Science and Technology 2004, 18, 905-924.
74.Nakayama, A.; Kawasaki, N.; Yamano, N.; Yamamoto, N.; Murakami, S.; Aiba, S. In IUPAC Polymer Conference 2002 Kyoto, Japan, 2002, p 634.
75.Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; 5th ed.; Wiley: New York, 1991.
76.W.Kemp Organic Spectroscopy; 3rd ed.; W.H. Freeman: New York, 1991.
77.Wu, D.; Wu, L.; Wu, L.; Xu, B.; Zhang, Y.; Zhang, M. Journal of Polymer Science: Part B: Polymer Physics 2007, 45, 1100-1113.
78.Ke, T.; Sun, X. Cereal Chemistry 2000, 77, 761-768.
79.Wang, N.; Yu, J.; Chang, P. R.; Ma, X. Carbonhydrate Polymers 2008, 71, 109-118.
80.Chung, Y.-L.; Lai, H.-M. Carbonhydrate Polymers 2006, 63, 527-534.
81.Zhang, J.-F.; Sun, X. Biomacromolecules 2004, 5, 1446-1451.
82.Wang, N.; Yu, J.; Ma, X. Polymer International 2007, 56, 1440-1447.
83.Wang, H.; Sun, X.; Seib, P. Journal of Applied Polymer Science 2001, 82, 1761-1767.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊