跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧昂志
研究生(外文):Ang-Jhih Lu
論文名稱:利用Stille連結聚合法合成含咔唑側鏈之低能隙電子施體/受體導電高分子及其特性研究與應用
論文名稱(外文):Synthesis, Characterization and Application of Low Band gap Donor-Acceptor Conducting Polymer Containing Side-Chain Carbazole via Stille Coupling Polymerization
指導教授:戴子安戴子安引用關係
指導教授(外文):C.-A. Dai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:卡唑低能隙Suzuki 連結聚合法Stille 連結聚合法電子施體-受體導電高分子
外文關鍵詞:low band gapSuzuki couplingStille couplingcarbazoleDonor-acceptorconducting polymer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來利用導電高分子/奈米顆粒混成系統來製作太陽能電池受到工業界及學術機關的高度興趣。因為高分子太陽能電池擁有價格低廉,並且可利用捲式塗佈技術進行大面積加工,使得這項研究受到極大的重視。目前由P3HT/PCBM混成系統做成的太陽能電池元件效率為4%。為了使效率超越P3HT/PCBM混成的太陽能電池元件,一個擁有適當光學能隙的導電高分子是重要的材料性質。在本篇碩士論文中,利用Stille 連結聚合法來製備一個含良好電洞傳導性質咔唑為側鏈的高分子,其主鏈是由quinoxaline/thiophene交錯行成的導電高分子,並且我們發現這樣的高分子對於一般有機溶劑仍然保有優秀的溶解性質。在化學合成過程中我們利用NMR,FT-IR和GPC等儀器來判定單體及高分子PCPQT的化學結構。此次合成出的新型高分子PCPQT是由交錯的電子施體thiophene單元和電子受體quinoxaline單元聚合而成。由電子施體和電子受體所形成的交錯型導電高分子,因為在其主鏈會形成電荷傳導現象,所以會在光學性質上有著我們希望的良好的性質。PCPQT 高分子可以溶解在多種有機溶劑中,如四氫扶喃。另外我們也發現隨著分子量的增加,在紫外光-可見光吸收光譜中會有從530nm紅移到630nm的現象。在X射線衍射分析實驗中我們發現聚合度分佈大的PCPQT高分子沒有晶體規則性,而純化過後聚合度分佈較小的PCPQT會有(100)面的晶體規則結構。在循環伏安法的電化學測試中,可以發現此高分子擁有比P3HT更低的HOMO能階,大約是5.5eV。目前,經由台灣大學凝態科學研究中心王立義老師的指導下,由其實驗室劉虹葳同學利用PCPQT/PCBM混成系統製作而成的太陽能電池元件已經達到0.4%的電力轉換效率。初步的研究發現PCPQT有著約 的電洞傳導率。最顯著的特色是PCPQT/PCBM混成系統的太陽能電池元件擁有比P3HT/PCBM混成系統還要高的開路電壓約0.75V。
Solar cells based on conducting polymer/nanoparticle hybrid system have recently attracted an ever increasing attention both in academics and industries due especially to their potential to be used in low cost, large area, and roll-to-roll production. To further enhance the power conversion efficiency of 4% achieved from solar cells made of regioregular poly(3-hexyl thiophene)/[6,6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM), new conducting polymers with optimized band energy levels are demonstrated to be one of the key material properties. In this master thesis work, I synthesized a highly soluble quinoxaline/thiophene alternating conducting polymer with hole transport moiety of carbazole as side chain using Stille coupling polymerization method. Various analytical techniques including H-NMR, C13-NMR, FTIR and GPC confirmed a successful synthesis of the constituent monomers [2,5-bis (trimethylstannyl) thiophene and 3-(4-(5,8-dibromo-2-(4-(9-butyl-9H-carbazol-3-yl) phenyl)quinoxalin-3-yl) phenyl)-9 -butyl-9H-carbazole(7)] and the resulting alternating conducting polymer PCPQT. The new conducting polymer PCPQT consists of alternating electron-donating thiophene unit and electron-accepting quinoxaline unit and shows interesting optical properties because of the formation of a charge-transferred (CT) electronic structure along the polymer chain. The polymer is soluble in organic solvents such as tetrahydrofuran and showed an increase in UV-VIS peak from 530nm to 630nm with increasing molecular weight. Powder X-ray diffraction analysis confirms that polydispersed PCPQT exhibits no crystalline order while monodispersed PCPQT shows a crystalline order plane of (100). The CT copolymers are electrochemically active in both oxidation and reduction regions and the cyclic voltammetry measurements show that the HOMO level of the CT polymer is ~5.5eV which is significantly lower than that of P3HT. Preliminary measurements have revealed hole mobilities of about of the pure material and a power conversion efficiency (PCE) up to 0.4% based on the solar cell consisted of PCPQT/PCBM hybrid system under AM 1.5 simulated sun light (100mW/cm2). Notably, the solar cell device made from PCPQT/PCBM exhibits a higher (~0.75V) than that of the conventional P3HT/PCBM one due mainly to the lower HOMO level of PCPQT. Further improvements are anticipated through a rational design of new low band gap quinoxiline/thiophene CT type conducting polymers.
Contents
Abstract………………………………………………………………………...………..I
中文摘要………………………………………………………………...……………..III
Contents…………………………………………………………………………….….IV
Table Captions………………………………………………………………...………VI
Figure Captions………………………………………………………………......…..VII
Scheme Captions………………………………………………….…………..………..X
Chapter 1 Introduction ………………………...………………...…………...……1
1-1 The origin of conjugated polymers………………………………………………1
1-2 Donor-acceptor systems……………………………………...…………………..2
1-3 Donor-acceptor alternating conjugated polymers for photon harvesting in bulk
heterojunction solar cells………………………………………...…………..…..4
1-4 Carbazole-containing polymers………………………………………………….5
1-5 The Stille reaction………………………………………………………………..6
Chapter 2 Experimental Part………………………………………...…………….8
2-1 General materials and methods……………………………………...………….10
2-2 Monomer synthesis…………………………………………………...………...12
2-3 Polymer synthesis……………………………………………………………….18
Chapter 3 Results and discussion ………………………………………...………20
3-1 Synthesis and characterization of the polymers…………………………...….…20
3-2 Optical Properties………...………………………………………………...…..22
3-3 Electrochemical property…………………………………………………...…..23
3-4 X-ray Diffraction……………………………………………………….…..…...24
Chapter 4 Characteristics of Photovoltaic Devices…………………….....…..….26
4-1 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/LiF/Al………....…26
4-2 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/Ca/Al……….……27
4-3 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/Al………..…....….28
Chapter 5 Conclusions………………………………………………………...…..31
Reference…………………………………………………………………………...….33
Appendix A NMR Spectra………………………………………………….……71















Table Captions
Table 1-1. Chemical structures, properties and performance in various solar cell devices………………………………………………….…………… .….42
Table 3-1. GPC estimated molecular weights of the polymers in THF………………47
Table 3-2. Molar absorption coefficient of PCPQT and P3HT………………...…….48
Table 3-3. Optical characteristics for PCPQT, CPQ, and PThQx(diPh) in dilute THF solutions ( ) and in the solid state…………………………...49
Table 4-1. Device characteristics of ITO/PEDOT:PSS/active Layer/LiF/Al……...…...66
Table 4-2. Device characteristics assembled in ITO/PEDOT:PSS /active layer
/Ca/Al……………………………………………………………………….66
Table 4-3. Device characteristics assembled in ITO/PEDOT:PSS/active layer/Al….....66
Table 4-4. Device characteristics assembled in ITO/PEDOT:PSS/active layer/Al….....66







Figure Captions
Figure 1-1. Band energy structure of a conjugated polymer……………………..…..36
Figure 1-2. Molecular orbital interaction in donor (D) and acceptor (A) moieties
leading to a D-A monomer with an unusually low HOMO-LUMO
energy separation………………………………………………………..37
Figure 1-3. Band formation during polymerization of a π-conjugated polymer……..38
Figure 1-4. Contour plot showing calculated energy-conversion efficiency
(contourlines and colors) versus bandgap and LUMO level of a donor
polymer according to the model described above……………….………39
Figure 1-5. Schematic of carrier transport in carbazole………………………..….…40
Figure 3-1. GPC trace of as synthesized PCPQT. (a) RI detector (b) UV
detector………………………………………………………….……….50
Figure 3-2. GPC trace of a fractionation purified PCPQT (PCPQT-pure). (a) RI
detector and (b) UV detector……………………………………….…....51
Figure 3-3. Comparison of molecular weight and distribution between PCPQT-as
synthesized and PCPQT-pure………………………………….…….…..52
Figure 3-4. TGA curves for PCPQT-pure, PPQT and CPQ monomer………..……...53
Figure 3-5. UV-VIS absorption spectra of PThQx(diPh), PCPQT-as synthesized
and CPQ monomer in THF………………………………………..……..54
Figure 3-6. UV-VIS absorption spectra of PTHQx(diPh) film and PCPQT film on
quartz plates cast from chloroform solution……………………….….....55
Figure 3-7. Comparison of UV-VIS absorption spectra of PCPQT film on quartz
plates and PCPQT in THF…………………………………………....….56
Figure 3-8. Comparison of UV-VIS absorption spectra of PTHQx(diPh) film on
quartz plates and PTHQx(diPh) in THF solution…………………….….57
Figure 3-9. UV absorption spectra of different molecule weight of PCPQT (in
THF solution) prepared from Prep-GPC method………...…….………..58
Figure 3-10. Molar absorption coefficient curves for PCPQT and poly (3-hexyl
thiophene) (P3HT) in THF…………………………………...……..….59
Figure 3-11. Cyclic voltammograms of PCPQT-pure………………………......……60
Figure 3-12. Energy-level diagram of PCPQT, PCBM, P3HT, PEDOT:PSS, ITO and
Al electrode………………………………………….………………….61
Figure 3-13. Powder x-ray diffraction pattern of PPQT………………………….…..62
Figure 3-14. Powder X-ray diffraction patterns of (a) PCPQT-as synthesized and (b)
PCPQT-pure…………………………………………………...………..63
Figure 3-15. Schematic representation of the proposed packing structure of
PCPQT-pure in solid state……………………………………...………64
Figure 3-16. IR spectra of PCPQT-pure and CPQ monomer measured in the form of
pressed KBr plates………………………………………….….....…….65
Figure 4-1. Current-voltage (J-V) characteristics of ITO/PEDOT:PSS/active
Layer/LiF/Al. cells…………………………………..………………….67
Figure 4-2. Current-voltage (J-V) characteristics of the ITO/PEDOT:PSS/active
layer/Al solar cells…………………………………...………...……….68
Figure 4-3. Dark current density –potential characteristic of a diode made of
ITO/PEDOT:PSS/active layer/Al with different PCPQT/ PCBM
ratios…………………………………………………………......……..69
Figure 4-4. IPCE vs wavelength for blends consisting of PCPQT-pure/PCBM
(1:0.7, 25.4mg/ml in chlorobenzene at 1400rpm) and P3HTPCBM
=1:0.8………………………………………………………...…………70








Scheme Captions
Scheme 1-1. The reaction mechanism of Stille coupling……………...……….…….41
Scheme 2-1. Synthetic route of CPQ……………………………………………….….8
Scheme 2-2. Synthetic route of PCPQT……………………………………...………..9
Reference

1.MacDiarmid, A. G. Angewandte Chemie-International Edition 2001, 40, (14), 2581-2590.
2.Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society-Chemical Communications 1977, (16), 578-580.
3.Shirakawa, H. Angewandte Chemie-International Edition 2001, 40, (14), 2575-2580.
4.Heeger, A. J. Angewandte Chemie-International Edition 2001, 40, (14), 2591-2611.
5.Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Reviews of Modern Physics 1988, 60, (3), 781-850.
6.Boudreaux, D. S.; Chance, R. R.; Elsenbaumer, R. L.; Frommer, J. E.; Bredas, J. L.; Silbey, R. Physical Review B 1985, 31, (1), 652-655.
7.Bredas, J. L.; Chance, R. R.; Baughman, R. H.; Silbey, R. Journal of Chemical Physics 1982, 76, (7), 3673-3678.
8.Ajayaghosh, A. Chemical Society Reviews 2003, 32, (4), 181-191.
9.Zhou, Z. H.; Maruyama, T.; Kanbara, T.; Ikeda, T.; Ichimura, K.; Yamamoto, T.; Tokuda, K. Journal of the Chemical Society-Chemical Communications 1991, (17), 1210-1212.
10.Yamamoto, T.; Zhou, Z. H.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B. L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. Journal of the American Chemical Society 1996, 118, (43), 10389-10399.
11.Lee, B. L.; Yamamoto, T. Macromolecules 1999, 32, (5), 1375-1382.
12.Kitamura, C.; Tanaka, S.; Yamashita, Y. Chemistry of Materials 1996, 8, (2), 570-578.
13.Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, (10), 1617-1622.
14.Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Materials 2005, 4, (11), 864-868.
15.Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L. Advanced Materials 2006, 18, (6), 789-+.
16.Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Applied Physics Letters 2006, 88, (9).
17.Hoegl, H. Angewandte Chemie-International Edition 1965, 4, (2), 164-&.
18.Hoegl, H.; Barchiet.G; Tar, D. Photochemistry and Photobiology 1972, 16, (4), 335-&.
19.Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Progress in Polymer Science 2003, 28, (9), 1297-1353.
20.Williams, D. J.; Froix, M.; Goedde, A. O. Bulletin of the American Physical Society 1975, 20, (3), 473-473.
21.Chiellini, E.; Solaro, R.; Galli, G.; Ledwith, A. Advances in Polymer Science 1984, 62, 143-169.
22.Chiellini, E.; Solaro, R.; Ledwith, A. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1978, 179, (8), 1929-1937.
23.Kim, H. S.; Kim, C. H.; Ha, C. S.; Lee, J. K. Synthetic Metals 2001, 117, (1-3), 289-291.
24.Wang, G. M.; Qian, S. X.; Xu, J. H.; Wang, W. J.; Liu, X.; Lu, X. Z.; Li, F. M. Physica B 2000, 279, (1-3), 116-119.
25.Stille, J. K. Angewandte Chemie-International Edition in English 1986, 25, (6), 508-523.
26.Farina, V.; Krishnan, B. Journal of the American Chemical Society 1991, 113, (25), 9585-9595.
27.趙君傑. 民國96年.
28.林怡菁. 民國95年.
29.Huang, J.; Niu, Y. H.; Yang, W.; Mo, Y. Q.; Yuan, M.; Cao, Y. Macromolecules 2002, 35, (16), 6080-6082.
30.Chen, S. Y.; Xu, X. J.; Liu, Y. Q.; Qiu, W. F.; Yu, G.; Wang, H. P.; Zhu, D. B. Journal of Physical Chemistry C 2007, 111, (2), 1029-1034.
31.Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F. Journal of the American Chemical Society 2006, 128, (14), 4911-4916.
32.Kanbara, T.; Miyazaki, Y.; Yamamoto, T. Journal of Polymer Science Part a-Polymer Chemistry 1995, 33, (6), 999-1003.
33.Lao, W. Y., J.; Yu, Z.; Qu, Q. HuaXue ShiJi 2000, 22, 260.
34.Li, Z. A.; Li, Z.; Di, C. A.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Zhang, K.; Liu, Y. Q.; Ye, C.; Qin, J. G. Macromolecules 2006, 39, (20), 6951-6961.
35.Bird, C. W.; Cheeseman, G. W.; Sarsfiel.Aa. Journal of the Chemical Society 1963, (Oct), 4767-&.
36.Apperloo, J. J.; Janssen, R. A. J.; Malenfant, P. R. L.; Frechet, J. M. J. Macromolecules 2000, 33, (19), 7038-7043.
37.Yamamoto, T.; Komarudin, D.; Arai, M.; Lee, B. L.; Suganuma, H.; Asakawa, N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.; Matsuda, H. Journal of the American Chemical Society 1998, 120, (9), 2047-2058.
38.Yamamoto, T.; Sanechika, K.; Yamamoto, A. Bulletin of the Chemical Society of Japan 1983, 56, (5), 1503-1507.
39.Kanbara, T.; Yamamoto, T. Macromolecules 1993, 26, (13), 3464-3466.
40.Yamamoto, T.; Lee, B. L. Macromolecules 2002, 35, (8), 2993-2999.
41.Yamamoto, T.; Lee, B. L.; Kokubo, H.; Kishida, H.; Hirota, K.; Wakabayashi, T.; Okamoto, H. Macromolecular Rapid Communications 2003, 24, (7), 440-443.
42.Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Applied Physics Letters 2005, 87, (8).
43.Yu, G.; Heeger, A. J. Journal of Applied Physics 1995, 78, (7), 4510-4515.
44.van Mullekom, H. A. M. Ph.D. Thesis; Technishe Universiteit Eindhoven 2000.
45.Naarmann, H.; Strohriegl, P., Marcel Dekker: 1992.
46.Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Advanced Functional Materials 2001, 11, (4), 255-262.
47.Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. Advanced Functional Materials 2002, 12, (10), 709-712.
48.Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R. Advanced Materials 2003, 15, (12), 988-+.
49.Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O. Applied Physics Letters 2004, 85, (21), 5081-5083.
50.Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
51.Wang, X. J.; Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2005, 15, (10), 1665-1670.
52.Zhang, F. L.; Perzon, E.; Wang, X. J.; Mammo, W.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2005, 15, (5), 745-750.
53.Bundgaard, E.; Krebs, F. C. Polymer Bulletin 2005, 55, (3), 157-164.
54.Xia, Y. J.; Luo, J.; Deng, X. Y.; Li, X. Z.; Li, D. Y.; Zhu, X. H.; Yang, W.; Cao, Y. Macromolecular Chemistry and Physics 2006, 207, (5), 511-520.
55.Zhang, F. L.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M. R.; Inganas, L.; Admassie, S.; Andersson, M. R.; Ingands, O. Advanced Materials 2006, 18, (16), 2169-+.
56.Ashraf, R. S.; Hoppe, H.; Shahid, M.; Gobsch, G.; Sensfuss, S.; Klemm, E. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (24), 6952-6961.
57.Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Advanced Functional Materials 2006, 16, (13), 1694-1704.
58.Wang, X. J.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N. K.; Langa, F.; Andersson, M. R.; Inganas, O. Thin Solid Films 2006, 511, 576-580.
59.Shi, C. J.; Yao, Y.; Yang, Y.; Pei, Q. B. Journal of the American Chemical Society 2006, 128, (27), 8980-8986.
60.Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O. Advanced Functional Materials 2006, 16, (5), 667-674.
61.Shin, W. S.; Kim, S. C.; Lee, S. J.; Jeon, H. S.; Kim, M. K.; Naidu, B. V. K.; Jin, S. H.; Lee, J. K.; Lee, J. W.; Gal, Y. S. Journal of Polymer Science Part a-Polymer Chemistry 2007, 45, (8), 1394-1402.
62.Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2007, 17, (18), 3836-3842.
63.Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, (6), 1981-1986.
64.Blouin, N.; Michaud, A.; Leclerc, M. Advanced Materials 2007, 19, (17), 2295-+.
65.Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M. Applied Physics Letters 2007, 90, (14), -.
66.Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H. Advanced Functional Materials 2007, 17, (16), 3326-3331.
67.Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. Journal of the American Chemical Society 2008, 130, (2), 732-742.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 己烷噻吩-己烷氧噻吩共聚物(P3HT-P3HOT)之合成機制探討與性質鑑定
2. 功能性聚對二甲苯之物理特性及鍍膜基材選擇性
3. 藉由格林納置換鏈成長聚合法合成全共軛硬桿-硬桿雙嵌段共聚高分子PPP-P3BT及其自組裝行為探討與奈米混成系統之研究
4. 氧化鋅/聚己烷噻吩高分子與氧化鋅/雙嵌段共聚高分子奈米原位混成系統:自組裝、特性及光電應用之探討
5. 硬桿/柔曲嵌段共聚高分子之陰離子合成,自組裝行為與超分子結構研究
6. 新穎性生態工程材料之研發及應用
7. 硬桿-柔曲與硬桿-硬桿共軛雙區段共聚高分子自組裝行為之探討及在奈米混成系統之應用
8. 以原位聚合方式合成之聚(3,4-乙烯二氧噻吩)/3-噻吩甲酸複合膜電阻式一氧化氮感測器
9. 高導電度EDOT/Aniline混成共聚高分子:原位氧化聚合、特性及其應用之研究
10. 以苯并吡啶為主體具不同側鏈及主鏈之低能隙導電高分子合成及其特性研究
11. 利用格林納置換鏈成長聚合法合成均一分子量分布之主鏈液晶型聚對位苯及其性質研究
12. 利用偶合反應法合成聚對苯乙烯-聚2乙烯之硬桿-柔曲塊狀共聚高分子及其自組裝特性研究
13. 新型無機/高分子奈米複合材料之合成與性質(一)異質凝聚法合成TiO2/Poly(AA-co-MMA)奈米粒子及應用PET混摻之研究(二)高導電PEDOT薄膜及ZnOnanorods/PEDOT薄膜之研究
14. 聚電解質/奈米碳管複合材料應用於電致動器之研究
15. 以陰離子聚合法合成導電/絕緣雙區段共聚高分子及其光電性質研究