(3.238.186.43) 您好!臺灣時間:2021/03/01 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇亭恩
研究生(外文):Ting-En Su
論文名稱:鈣網蛋白之表達影響人類胃癌細胞株生理現象之研究
論文名稱(外文):The Study of Physiological Effects of CalreticulinExpression in AGS Human Gastric Cancer Cell Line
指導教授:李心予李心予引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:49
中文關鍵詞:鈣網蛋白胃癌細胞生長細胞爬行結締組織生長因子胎盤生長因子
外文關鍵詞:calreticulingastric cancerproliferationmigrationconnective tissue growth factorplacenta growth factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鈣網蛋白(Calreticulin, CRT)是一個在內質網中的多功能蛋白質,可調控細胞中的多種功能,諸如鈣離子平衡、細胞黏附和基因表達等。許多的研究已指出鈣網蛋白被大量地表達於癌症組織中,這顯示鈣網蛋白在癌症組織可能扮演重要角色,目前尚未有鈣網蛋白在胃癌中的研究報導,從臺大醫院陳炯年醫師的臨床結果顯示,和正常組織相比,胃癌組織中可偵測到大量表達的鈣網蛋白,且鈣網蛋白的表現量和腫瘤轉移、侵襲、血管密度、胎盤生長因子(placenta growth factor, PlGF)的表達量皆有高度正相關,此外,若病人的胃癌組織中有較高的鈣網蛋白表達量,其存活率較低,這顯示了胃癌的惡性度的確和鈣網蛋白相關,本研究的目的為鈣網蛋白對於胃癌細胞所造成的生理現象影響的探討。為了研究鈣網蛋白的作用,我們首先建立了鈣網蛋白大量表達及少量表達的穩定胃癌細胞株,由這些細胞株中顯示,大量表達鈣網蛋白可使胃癌細胞的形狀改變,變得較為伸展,同時也可加快細胞生長及爬行的速度;至於少量表達鈣網蛋白的細胞則可觀察到相反的情形。我們更進一歩利用cDNA微陣列法中發現結締組織生長因子(connective growth factor, CTGF),此一和癌症轉移相關的蛋白質,是可能被鈣網蛋白所調控的分子,我們的實驗發現鈣網蛋白在轉錄及轉譯層級皆有著負向調控結締組織生長因子的作用。再者,在臨床上所觀察到和鈣網蛋白有著正相關的促血管新生因子-胎盤生長因子也能夠被鈣網蛋白所調控,亦即在大量表達鈣網蛋白的胃癌細胞株中,其胎盤生長因子的信使核糖核酸(mRNA)及蛋白質會增加。綜合上述所論,我們的實驗結果清楚地解釋為何在較惡性的胃癌組織中著有較大量的鈣網蛋白表現量,因為在胃癌細胞株中,大量表達鈣網蛋白可促使胃癌細胞伸展,生長及爬行速率較快,並且可調節使得癌症惡化的因子如結締組織生長因子和胎盤生長因子等。我們的研究顯示鈣網蛋白可當作預測病人預後的一個分子,也可作為控制癌症病情的治療標靶。
Calreticulin (CRT) is a multiple functional chaperone protein mainly expressed in the endoplasmic reticulum (ER), and it regulates various cellular functions including Ca2+ homeostasis, adhesion, and gene expression. Although it is reported that CRT is overexpressed in several cancer tissues, the relationship between CRT expression and gastric cancer has not been revealed. Dr. Chung-Nien Chen’s clinical results indicated that CRT expression is correlated with tumor metastasis, invasion, microvessel density and expression of placenta growth factor (PlGF). Furthermore, survival rate of gastric cancer patients with high CRT expression is lower than low CRT expression counterpart. Therefore, it is suggested that CRT might play crucial roles in regulating gastric cancer behavior. In this study, we select CRT stably overexpressed- and knockdowned-AGS gastric cancer cell lines to investigate the physiological effects of CRT in these cells. We demonstrated that overexpression of CRT increases cell spreading, proliferation and migration. In contrast, knockdown of CRT suppresses these effects. In addition, by using cDNA microaraay analysis and compared with clinical results, we found that connective tissue growth factor (CTGF) and PlGF might be regulated by the expression of CRT. CTGF, a molecule related to cancer progression, is negatively regulated by CRT expression at both transcriptional and translational levels. Meanwhile, PlGF mRNA and protein expressions are significantly up-regulated in CRT-overexpressed cells. In conclusion, CRT could positively regulate cell spreading, proliferation, migration, and PlGF expression in gastric cancer cells, while CTGF is negatively modulated by CRT. Taken together, our data explained the correlation between CRT overexprssion and worse clinicopathological factors in clinical observations. In the future, CRT might used as a potential marker for prognosis prediction and a therapeutic target in gastric cancer.
中文摘要…………………………………………………………………I

Abstract...…………………………...……………………………………II

Introduction………………………………………………………………1
Calreticulin (CRT) structure and functions………………………………………1
CRT in cancer tissues…………………………………………………………….2
Gastric cancer…………………………………………………………………….3
Connective tissue growth factor (CTGF)………………………………………...4
Placenta growth factor (PlGF)……………………………………………………5
Tumor angiogenesis, metastasis, and invasion…………………………………...6

Material and Methods…………………………………………………….8
Reagents………………………………………………………………………….8
Cell culture……………………………………………………………………….9
Plasmid constructions……………………………………………………………9
Transfection and stable clones selection…………………………………………9
Cell cycle analysis………………………………………………………………10
Chemotaxis assay……………………………………………………………….10
RNA isolation and RT-Q-PCR…………………………………………………..10
Western blot……………………………………………………………………..11
Microarray………………………………………………………………………12
ELISA…………………………………………………………………………...12
Statistics analysis………………………………………………………………..12

Results………..…………………………………………………………14
Plasmid constructions and stable cell lines selection…………………………...14
CRT mRNA and protein expression in CRT differentially expressed stable cell lines……………………………………………………………………………...14
Cell morphology of CRT differentially expressed stable cell lines…………….15
EGFP protein and CRT-EGFP fusion protein distribution in stable cell lines….15
Cell cycle analysis of CRT differentially expressed stable cell lines…………...15
Cell migration analysis of CRT differentially expressed stable cell lines……...16
Microarray analysis of genes regulated by CRT expression……………………17
CTGF mRNA and protein is down-regulated in CRT-overexpressed cells and up-regulated in CRT-knockdowned cells………………………………………17
PlGF mRNA and protein secretion is up-regulated in CRT-overexpressed cells18
Physiological Effects of CRT expression in gastric cancer cells are associated to clinical observations…………………………………………………………….18
Discussion……………………………………………………………….20

References………………………………………………………………25

Tables……………………………………………………………………34

Figures…………………………………………………………………..38
Alaiya A, Roblick U, Egevad L, Carlsson A, Franzen B, Volz D, Huwendiek S, Linder S, Auer G (2000) Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma. Anal Cell Pathol 21(1): 1-9

Alberts SR, Cervantes A, van de Velde CJ (2003) Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 14 Suppl 2: ii31-36

Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5(10): 2602-2611

Baksh S, Burns K, Andrin C, Michalak M (1995a) Interaction of calreticulin with protein disulfide isomerase. J Biol Chem 270(52): 31338-31344

Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266(32): 21458-21465

Baksh S, Spamer C, Heilmann C, Michalak M (1995b) Identification of the Zn2+ binding region in calreticulin. FEBS Lett 376(1-2): 53-57

Bastianutto C, Clementi E, Codazzi F, Podini P, De Giorgi F, Rizzuto R, Meldolesi J, Pozzan T (1995) Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130(4): 847-855

Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M, Sanchez JC, Frutiger S, Hughes G, Pallini V, Hochstrasser DF, Tosi P (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18(15): 2832-2841

Bouvier M, Stafford WF (2000) Probing the three-dimensional structure of human calreticulin. Biochemistry 39(48): 14950-14959

Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20(2): 189-206

Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5(3): 153-165

Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79: 233-269

Brunagel G, Shah U, Schoen RE, Getzenberg RH (2003) Identification of calreticulin as a nuclear matrix protein associated with human colon cancer. J Cell Biochem 89(2): 238-243

Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367(6462): 476-480

Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801): 249-257

Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5): 575-583

Chang CC, Lin MT, Lin BR, Jeng YM, Chen ST, Chu CY, Chen RJ, Chang KJ, Yang PC, Kuo ML (2006) Effect of connective tissue growth factor on hypoxia-inducible factor 1alpha degradation and tumor angiogenesis. J Natl Cancer Inst 98(14): 984-995

Chen CN, Hsieh FJ, Cheng YM, Cheng WF, Su YN, Chang KJ, Lee PH (2004) The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer. Cancer Lett 213(1): 73-82

Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE, Chen MW, Hua KT, Wu YL, Cha ST, Babu MS, Chen CN, Lee PH, Chang KJ, Kuo ML (2007) CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120(Pt 12): 2053-2065

Coppolino M, Leung-Hagesteijn C, Dedhar S, Wilkins J (1995) Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem 270(39): 23132-23138

Coppolino MG, Dedhar S (1998) Calreticulin. Int J Biochem Cell Biol 30(5): 553-558

Culina S, Lauvau G, Gubler B, van Endert PM (2004) Calreticulin promotes folding of functional human leukocyte antigen class I molecules in vitro. J Biol Chem 279(52): 54210-54215

Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, et al. (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462): 480-483

Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, Xia QC (2004) Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 4(4): 982-994

Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237: 97-132

Eggleton P, Llewellyn DH (1999) Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol 49(5): 466-473

Fadel MP, Szewczenko-Pawlikowski M, Leclerc P, Dziak E, Symonds JM, Blaschuk O, Michalak M, Opas M (2001) Calreticulin affects beta-catenin-associated pathways. J Biol Chem 276(29): 27083-27089

Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1): 4-6

Frazier KS, Grotendorst GR (1997) Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol 29(1): 153-161

Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2): 321-334

Gold LI, Rahman M, Blechman KM, Greives MR, Churgin S, Michaels J, Callaghan MJ, Cardwell NL, Pollins AC, Michalak M, Siebert JW, Levine JP, Gurtner GC, Nanney LB, Galiano RD, Cadacio CL (2006) Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects. J Investig Dermatol Symp Proc 11(1): 57-65

Guo L, Groenendyk J, Papp S, Dabrowska M, Knoblach B, Kay C, Parker JM, Opas M, Michalak M (2003) Identification of an N-domain histidine essential for chaperone function in calreticulin. J Biol Chem 278(50): 50645-50653

Guo L, Nakamura K, Lynch J, Opas M, Olson EN, Agellon LB, Michalak M (2002) Cardiac-specific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. J Biol Chem 277(52): 50776-50779

Hayashida Y, Urata Y, Muroi E, Kono T, Miyata Y, Nomata K, Kanetake H, Kondo T, Ihara Y (2006) Calreticulin represses E-cadherin gene expression in Madin-Darby canine kidney cells via Slug. J Biol Chem 281(43): 32469-32484

Heilmann C, Spamer C, Leberer E, Gerok W, Michalak M (1993) Human liver calreticulin: characterization and Zn(2+)-dependent interaction with phenyl-sepharose. Biochem Biophys Res Commun 193(2): 611-616

Hellman K, Alaiya AA, Schedvins K, Steinberg W, Hellstrom AC, Auer G (2004) Protein expression patterns in primary carcinoma of the vagina. Br J Cancer 91(2): 319-326

Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16(2): 219-221

Ito H, Seyama Y, Kubota S (2001) Calreticulin is directly involved in anti-alpha3 integrin antibody-mediated secretion and activation of matrix metalloprotease-2. Biochem Biophys Res Commun 283(2): 297-302

Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T (2004) Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci 95(12): 955-961

Jazowiecka-Rakus J, Jarosz M, Szala S (2006) Combination of vasostatin gene therapy with cyclophosphamide inhibits growth of B16(F10) melanoma tumours. Acta Biochim Pol 53(1): 199-202

Johnson S, Michalak M, Opas M, Eggleton P (2001) The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11(3): 122-129

Kadowaki Y, Ishihara S, Miyaoka Y, Rumi MA, Sato H, Kazumori H, Adachi K, Takasawa S, Okamoto H, Chiba T, Kinoshita Y (2002) Reg protein is overexpressed in gastric cancer cells, where it activates a signal transduction pathway that converges on ERK1/2 to stimulate growth. FEBS Lett 530(1-3): 59-64

Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Terai A, Arai Y, Yoshiki T (2004) Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 50(5): 857-866

Kakeji Y, Maehara Y, Sumiyoshi Y, Oda S, Emi Y (2002) Angiogenesis as a target for gastric cancer. Surgery 131(1 Suppl): S48-54

Kelley JR, Duggan JM (2003) Gastric cancer epidemiology and risk factors. J Clin Epidemiol 56(1): 1-9

Lai IR, Lee WJ, Huang MT, Lin HH (2002) Comparison of serum CA72-4, CEA, TPA, CA19-9 and CA125 levels in gastric cancer patients and correlation with recurrence. Hepatogastroenterology 49(46): 1157-1160

Lange-Asschenfeldt B, Velasco P, Streit M, Hawighorst T, Pike SE, Tosato G, Detmar M (2001) The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J Invest Dermatol 117(5): 1036-1041

Li L, Yuan YZ, Lu J, Xia L, Zhu Y, Zhang YP, Qiao MM (2006) Treatment of pancreatic carcinoma by adenoviral mediated gene transfer of vasostatin in mice. Gut 55(2): 259-265

Liu M, Imam H, Oberg K, Zhou Y (2005) Gene transfer of vasostatin, a calreticulin fragment, into neuroendocrine tumor cells results in enhanced malignant behavior. Neuroendocrinology 82(1): 1-10

Mancino L, Rizvi SM, Lapinski PE, Raghavan M (2002) Calreticulin recognizes misfolded HLA-A2 heavy chains. Proc Natl Acad Sci U S A 99(9): 5931-5936

Marrelli D, Pinto E, De Stefano A, Farnetani M, Garosi L, Roviello F (2001) Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am J Surg 181(1): 16-19

Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH, Michalak M (1999) Calreticulin is essential for cardiac development. J Cell Biol 144(5): 857-868

Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344 Pt 2: 281-292

Miyaoka Y, Kadowaki Y, Ishihara S, Ose T, Fukuhara H, Kazumori H, Takasawa S, Okamoto H, Chiba T, Kinoshita Y (2004) Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene 23(20): 3572-3579

Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M (2003) Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett 192(2): 205-214

Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, Papp S, De Smedt H, Parys JB, Muller-Esterl W, Lew DP, Krause KH, Demaurex N, Opas M, Michalak M (2001) Functional specialization of calreticulin domains. J Cell Biol 154(5): 961-972

Odorisio T, Schietroma C, Zaccaria ML, Cianfarani F, Tiveron C, Tatangelo L, Failla CM, Zambruno G (2002) Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci 115(Pt 12): 2559-2567

Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194(6): 781-795

Opas M, Szewczenko-Pawlikowski M, Jass GK, Mesaeli N, Michalak M (1996) Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol 135(6 Pt 2): 1913-1923

Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T (2002) Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 24(7): 677-683

Papp S, Fadel MP, Kim H, McCulloch CA, Opas M (2007) Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J Biol Chem 282(22): 16585-16598

Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269(41): 25646-25654

Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188(12): 2349-2356

Pike SE, Yao L, Setsuda J, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Atreya CD, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1999) Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94(7): 2461-2468

Planque N, Perbal B (2003) A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 3(1): 15

Rojiani MV, Finlay BB, Gray V, Dedhar S (1991) In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry 30(41): 9859-9866

Sekikawa A, Fukui H, Fujii S, Ichikawa K, Tomita S, Imura J, Chiba T, Fujimori T (2007) REG I{alpha} Protein Mediates an Anti-apoptotic Effect of STAT3 Signaling in Gastric Cancer Cells. Carcinogenesis

Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, Kawai A, Nakanishi T, Takigawa M, Inoue H (2000) Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89(7): 1466-1473

Wanebo HJ, Kennedy BJ, Chmiel J, Steele G, Jr., Winchester D, Osteen R (1993) Cancer of the stomach. A patient care study by the American College of Surgeons. Ann Surg 218(5): 583-592

Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G, Gress TM (1999) Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 18(4): 1073-1080

Wu M, Massaeli H, Durston M, Mesaeli N (2007) Differential expression and activity of matrix metalloproteinase-2 and -9 in the calreticulin deficient cells. Matrix Biol 26(6): 463-472

Wu PC, Yang LC, Kuo HK, Huang CC, Tsai CL, Lin PR, Shin SJ, Tai MH (2005) Inhibition of corneal angiogenesis by local application of vasostatin. Mol Vis 11: 28-35

Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H (2005) Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer 8(2): 86-94

Yoon GS, Lee H, Jung Y, Yu E, Moon HB, Song K, Lee I (2000) Nuclear matrix of calreticulin in hepatocellular carcinoma. Cancer Res 60(4): 1117-1120

Yu LR, Zeng R, Shao XX, Wang N, Xu YH, Xia QC (2000) Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis 21(14): 3058-3068

Zhang Q, Salter RD (1998) Distinct patterns of folding and interactions with calnexin and calreticulin in human class I MHC proteins with altered N-glycosylation. J Immunol 160(2): 831-837

Zheng L, Wang L, Ajani J, Xie K (2004) Molecular basis of gastric cancer development and progression. Gastric Cancer 7(2): 61-77

Ziche M, Maglione D, Ribatti D, Morbidelli L, Lago CT, Battisti M, Paoletti I, Barra A, Tucci M, Parise G, Vincenti V, Granger HJ, Viglietto G, Persico MG (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76(4): 517-531
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔