跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張淑華
研究生(外文):Shu-Hua Chang
論文名稱:光學干涉術對於平板之動態分析的應用
論文名稱(外文):The Application of the Optical Interferometer for Dynamical Analysis on Plates
指導教授:陳 國 在
指導教授(外文):Kuo-Tsai Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:110
中文關鍵詞:矩形平板四邊固定橫向剪切干涉術
外文關鍵詞:rectangular platefix endlateral shearing interferometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學量測方法最大的優點在於其為非接觸式及具高解析度的特色,因此在測量上是非常重要的技術,其中光學的干涉術最具代表性。干涉術的架構大體可分為二種,即共光路與非共光路,非共光路架構,其參考光和物光沿不同的光路傳播,因此易受環境條件影響精確性,而共光路架構則參考光與物光沿相同光路傳播,此方法可克服實驗環境問題。共光路架構最典型的架構為橫向切剪干涉術,此種干涉架構對於環境條件較不敏感,無需侷限於精密之光學實驗室內進行。對於偵測振動物體之表面變形狀態,合併相移法則可做為振動物體之動態分析。
在本論文中,應用橫向剪切干涉術找出振動平板之最大振幅精確的位置,並於其上施加質量載重或內部支承,使得共振模態改變,進而降低平板的聲輻射,本文中包含了平板的理論分析,探討振動的響應,光學部分則說明橫向剪切干涉術的原理,並以實驗印證此系統對於降低聲音輻射之影響。
針對鏡面鋼板及霧面鋼板實驗,結果顯示在較低的模態中,如(1,1)及(1,2)模態,輔以橫向剪切干涉術可大幅消除主要貢獻的聲輻射,特別是鏡面平板之(1,1)模態,附加質量載重聲輻射衰減量達32.2dB。
Because of its non-contact and high-resolution characteristics, optical measurement has been one of the most important techniques of measurements. The interferometry structure has two types including a common path and a non-common path. In the architecture of non-common path, the reference beam and object beam spread in different optical paths. Therefore, the precise of measurement is easily influenced by the environment condition. However, both beams in the common path structure deliver in the same optical path. This way can get over the environmental factors in laboratory. The lateral shearing interferometer is the typical common path interferometry. This structure is not so sensitive to the external condition, which enables itself not to be limited in the optical laboratory in experiments.
One of the most interesting and useful applications of lateral shearographic interferometry is the detection and measurement of the vibration objects deformation. The lateral shearing interferometers combined with phase shifting for vibration analysis of plates can be presented perfectly. The one which should be mentioned is methods of measuring vibration. We adopt the time average and stroboscopic techniques.
This study attempts to discuss the lateral shearing interferometer approach in order to find out the location of maximum amplitude. And applying added mass loading and inner support methods can change the resonant modal and meanwhile reduce the acoustic radiation from square plates. The study includes the dynamical analysis of uniform plates, the theoretical consideration on vibration analysis and lateral shearing interferometer, and the laboratory demonstration on the acoustic-radiation reduction of plates by using lateral shearing interferometer approach.
Results of dynamical analysis on different plates obviously reveal lower modes such as (1, 1) and (1, 2) modes must respond to the most acoustic radiation from plates. This experiment proves that much more reduction of acoustic radiation from plates over greater frequency range can be reached when using a lateral shearing interferometer. The corresponding experimental results clearly show that the greater effectiveness on (1, 1) mode by 32.2dB reduction for glass polish finish plate refashioned by using mass loading.
中文摘要 II
TABLE OF CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES XV
CHAPTER ONE INTORDUCTION 1
1.1 Introduction 1
1.2 Contents of dissertation 2
CHAPTER TWO LITERATURE SURVERY 4
2.1 vibration system and sound radiation from a rectangular plate 4
2.2 Lateral shearing interferometer 6
2.3 Phase shift method 9
CHAPTER THREE THEORY 10
3.1 Dynamic response analysis of vibration rectangular plate 10
3.2 Radiated sound power from rectangular plate 15
3.3 Lateral Shearing Interferometer (LSI) 18
3.4 Phase shifting technology in LSI 27
3.5 Combination of vibration with lateral shearing interferometer 31
3.6 Measurement techniques: time average method and pulse laser method 33
3.7 System verification method 36
CHAPTER FOUR EXPERIMETAL SETUP 43
4.1. Set up of vibration system 43
4.2 Optical system device 45
4.3 Interference fringe patterns measurement 47
4.4. Implementation of the phase shifting technique 50
4.5. Integration of all of the experiment process 51
4.6 Arrangement of verification system equipments 53
CHAPTER FIVE SIMULATION 60
5.1 Simulation of the optical interferogram 60
CHAPTER SIX RESULTS AND DICUSSION 67
6.1 Dynamical response for the plate without re-fashion 67
6.2 Dynamical response on the refashioned plate 69
6.3 Display and discussion on interferograms 71
6.4 The Verification of Shearograph 72
CONCLUSION 73
PROSPECTION 75
REFERENCES 105
[1].R.D Mindlin, Mathematical Theory of Vibrations of Elastic Plates and Bars. Frequency Control 12th Annual Symposium on 158, 1-27
[2]. Das Y. C. and Navaratna D. R. ,Vibrations of a rectangular plate with concentrated mass, spring and dashpot. J. Apple. Mech. 1963; 30, pp.31-36.
[3].Cohen H. and Handelman F., vibration of rectangular plate with distributed added mass. Journal of Franklin Institute 1956; 261, pp.319-329.
[4].B. R. Mace, Sound radiation from a plate reinforced by two sets of parallel stiffeners. Journal of Sound and Vibration Volume 71, Issue 3, 8 August 1980, Pages 435-441
[5].C.E Imrak and I Gerdemeli, An Exact Solution for the Deflection of a Clamped Rectangular Plate under Uniform Load. Applied Math. Sci. Vol.1, 2007, no.43 pp.2129-2137
[6].S. Srinivas, C. V. Joga Rao and A. K. Rao, An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. Journal of Sound and Vibration, Volume 12, Issue 2, June 1970, Pages 187-199
[7].N. S. Lomas and S. I. Hayek, Vibration and acoustic radiation of elastically supported rectangular plates. Journal of Sound and Vibration, Volume 52, Issue 1, 8 May 1977, p. 1-25
[8].C ERDEM IMRAK and ISMAIL GERDEMELI, The problem of isotropic rectangular plate with four clamped edges. Sadhana Vol. 32, Part 3, June 2007, pp. 181–186.
[9].A. Mukherjee and M. Mukhopadhyay, Finite element free vibration of eccentrically stiffened plates. Computers and Structures , Vol.30(6),1303-1317(1988)
[10].A. Lessa, Vibration of plates. Acoustical Society of America. (1993)
[11].C.E. Wallace, Radiation resistance of a rectangular panel. J. Acoust. Soc. Am. 51, 946 -952 (1971)
[12]. M.C. Gomperts, Radiation from rigid baffled rectangular plates with general boundary condition. Acoustica 30, 320-327 (1974)
[13]. R.M. Lin and M.K. Lim, Natural frequencies plates with arbitrary concentrated mass and stiffness modifications. Computers and Structures Vol.57(4), 721-729(1995)
[14].J.S. Wu and S.S. Luo, Use of Analytical-And-Numerical-Combined Method in Free Vibration Analysis of a Rectangular Plate with any Number of Point Masses and Translational Springs. J. Sound Vib. , 200(2), 179-194 (1997)
[15]. H. Cohen and F. Handelman, Vibrations of a rectangular plate with distributed added mass. Journal of Franklin Institute 261 , 319-329 (1956)
[16].O. Kopmaz and S. Telli, Free vibration of a rectangulat plate carrying a distributed mass. J. Sound Vib. 251(1),39-57 2002
[17].Low K.H., An equivalent-center-weight factor method for predicting fundamental frequency of plates carrying multiple masses from experimental test data. J. Sound Vib.,Vol.168,123-139(1993)
[18]. Achong A., Vibrational analysis of mass loaded plates and shallow shells by the receptance method with application to the steel plate. J. Sound Vib., Vol.17, 191-207(1996)
[19].W.L.Li and H.J.Gibeling, Acoustic radiation from a rectangular plate reinforced by springs at arbitrary locations. J. Sound Vib. 220(1) , p.117-113 , (1999)
[20].Sheng Li, Xianhui Li,The effects of distributed masses on acoustic radiation behavior of plates. Applied Acoustics accepted 2 November 2006
[21].Miguel C.Junger and David Feit, Sound, Structures, and Their Interaction. second edition
[22].Velten, T.; He, C.Y.; Obermeier E. , Dynamic behavior of a new two-axis accelerometer. IEEE Transactions on Acoustics, Speech, and Signal Processing Volume 2, 16-19 June 1997 Page(s):1217 - 1220 vol.2
[23]. Fuller C.R. Active control of sound transmission/radiation from elastic plats by vibration inputs I analysis. J. Sound & Vib. 1990; 136(1).
[24].Huand C. H., Ma C. C. Vibration Characteristics of composite piezo-ceramic plates at resonant frequenciesexperiments and numerical calculations. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2001; 48 (4):1147-1156.
[25]. Chu C.L., Fan K.C. and Chen Y.J. A compensation method for the hysteresis error of DVD VCM. Meas. Sci. Techno. 2004; 15 pp.734–740.
[26]. Hnilicka B., Voda A. and H.J Schroder, Modaling the characteristics of a photo detector in a DVD player. Sensors and Actuators 2005; A 120:494-506.
[27].Gary clound, Optical Methods of engineering analysis. Cambridge university press 1998
[28].P.Hariharan ,Optical Interferometry, Academic press inc 1985
[29].W.J Bates, A wavefront shearing interferometer. PROC. PHYS.SOC. Vol.59 1946, pp.940-950
[30].R.L. Drew, A simplified shearing interferometer. PROC. PHYS.SOC. Vol.64 1951, pp.1005-1010
[31].M.V.R.K. Murty, The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source. Applied optics Vol.3(4) April 1964 pp.531-535
[32].Jae Bong Song, Yun Woo Lee, and Yong Hee Lee, Simple phase-shifting methods in a wedge-plate lateral-shearing interferometer. Applied Optics Vol.43 (20),pp.3989-3992
[33].J.B Saunders, A simple interferometric method for workshop testing of optics. Applied optics Vol.9(7) July 1970 pp.1623-1629
[34].C.Polhemus, Two-wavelength interferometry. Applied optics Vol.12(9) September 1973 pp.2071-2074
[35].Ole J.L kberg and Kare H gmoen, Vibration phase mapping using electronic speckle pattern interferometry. Applied optics Vol.15(11) November 1976 pp.2071-2074
[36].Kare H gmoen and Ole J.L kberg, Detection and measurement of small vibrations using electronic speckle pattern interferometry. Applied optics Vol.16(7) July1977 pp.1869-1875
[37].Ole J.L kberg,The ultimate holographic tool for vibration analysis. J. Acoust. Soc. Am. 76 1984 pp.1783-1791
[38].William W. and Macy Jr., Two-dimensional fringe-pattern analysis. Applied optics Vol.22(23) December 1983 pp.3898-3901
[39].Donald J. Bone, H.A. Bachor and R. John Sandeman, Fringe-pattern analysis using a 2-D Fourier transform. Applied optics Vol.25(10) May 1985 pp.1653-1660
[40].E. Serabyn, T.G Phillips and C.R. Masson, Surface figure measurements of radio telescopes with a shearing interferometer. Applied optics Vol.30(10) April 1991 pp.1227-1241
[41].Pramod K. Rastogi, An electronic pattern speckle shearing interferometer for the measurement of surface slope variations of three-dimensional objects. Optics and Laser in engineering 26(1997)pp.93-100
[42].J D R Valera, J D C Jones and O J.L kberg, Exact vibration amplitude derivative measurement with TV shearography. Meas. Sci. Technol. 7 (1996) pp.918-922
[43].Shashi Prakash, I.P. Singh, Chandra Shakher, Display of tilt information of vibrating object in time average mode using lateral shearing interferometry and interferometric grating. Optics & Laser Technology, 33 (2001) pp.117-120
[44].Richard Schneider, Peter Thurmel, Michael Stockmann, Distance measurement of moving objects by frequency modulated laser radar. Opt. Eng. 40(1) 33-37 January 2001
[45].Peter de Groot, Unusual techniques for absolute distance measurement. Opt. Eng. 40(1) 28-32 January 2001
[46].Dalip Sing Mehta, Priti Singh, Mohammad S. Faridi, Saba Mirza, Chandra Shakher, Distance measurement with extended range using lateral shearing interferometry and Fourier transform fringe analysis. Opt. Eng. 44(6) June 2005
[47].G. Garcia-Torales, G. Paez, M.Strojnik, J. Villa, J.L. Flores, A. Gonzalez Alvarez, Experimental intensity patterns obtained from a 2D shearing interferometer with adaptable sensitivity, Optics Communications 257 (2006) pp. 16-26
[48].Y. Pavan Kumar, Sanjib Chatterjee, Noncontact thickness measurement of plane-parallel transparent plates with a lateral shearing interferometer. Opt. Eng. 46(3) March 2007
[49].E. D. Fletcher† and H. D. Parbrook, Some aspects of the acoustic interferometer. Journal of Sound and Vibration Vol.1, Issue 2, April 1964, Pages 179-182
[50].J. Butterworth and P. Lord, Note on a photographic technique for determining particle velocity in a sound field, with an application to resonators. Journal of Sound and Vibration ,Vol.2, Issue 2, April 1965, Pages 128-130
[51].M. Cortia, F. Parmigiania and S. C. L. Botcherby, Description of a coherent light technique to detect the tangential and radial vibrations of an arch dam. Journal of Sound and Vibration Volume 84, Issue 1, 8 September 1982, Pages 35-45
[52].F.J Nieves, F. Gascon, A. Bayon, Natural frequencies and mode shapes of flexural vibration of plates laser-interferometry detection and solutions by Ritz''s method. Journal of Sound and Vibration 278(2004)637-655
[53].Daniel Malacara, Optical Shop Testing, John Wiley& Sons, Inc. 1992
[54].Ping Sun, Digital phase-shifting shearography for strain measurement by using a rotating platform system. Optical Engineering, 44(8),085601, August 2005
[55].Xianghong Zhong, A four-frame phase shift method insensitive to phase shifter nonlinearity. J. Opt. A:pure Appl.Opt. 8 (2006)pp. 300-303
[56].Lloyd Armstrong Jrt and Serge Feneuille, Theoretical analysis of the phase shift measurement of lifetimes using monochromatic light. J. Phys. B: Atom. Molec. Phys. Vol.8 (4) 1975 pp.546-551
[57].W. O. Wong, K. T. Chan, and T. P. Leung, Identification of antinodes and zero-surface-strain contours of flexural vibration with time average speckle pattern shearing interferometry. Applied Optics, Vol.36, No.16,1 June 1997,pp.3776-3784
[58].C.J.Tay, C.Quan and H.M. Shang, Shape identification using phase shifting interferometry and Liquid-Crystal phase modulator. Optics and Laser Technilogy, Vol.30 pp.545-550,1998
[59].L.S. Wang and S. Krishnaswamy, Shape measurement using additive-subtractive phase shifting speckle interferometry. Measurement Science & Technology, Vol.7 1996, pp. 1748-1754
[60].F Sakao, A simple analogue device for constructing the time average of a fluctating input. Journal of Physics E: Scientific Instruments 1975 Volume 8 pp.395-397
[61].Gen Jun Xu and Gregorio Weber, Dynamics and time average chemical potential of proteins importance in oligomer association. Proc. Natl. Acad. Sci. USA. Vol.79, pp.5268-5271, September 1982
[62].C. Joenathan and B.M. Khornan, Contrast of the vibration fringes in time-averaged electronic speckle-pattern interferometry effect of speckle averaging. Applied optics Vol.31(11) April 1992 pp.1863-1870
[63].Anand Asundi and Vijay Raj Singh, Time-averaged in-line digital holographic interferometry for vibration analysis. Applied optics Vol.45(11) April 2006 pp.2391-2395
[64].D.A.Senior, B.A, A High-power Stroboscope. Experimental procedure, Vol.23 April 1946, pp.81-83
[65].J.D. Lewis, D.I.C and G.T Peck, A method of flash synchronization for high-speed cinematography. Journal of scientific instruments, Vol.35, September 1958, pp.338-340
[66].Jurij Kotar, Simon Vidrih and Andrej Cadez, Charge coupled device based phase resolved stroboscopic photometry of pulsars. Review of scientific instruments Vol.74(8), June 2003, pp.3111-3114
[67].W. Steinchen, Y. Gan, G.Kupfer, P. Mackel, Digital shearography using stroboscopic illumination additional to time average method. Proc. Of SPIE Vol.5503,pp.499-509

[68].Dorsch R. G., Hausler G. and Herrmann J. M., Laser triangulation: Fundamental uncertainty in distance measurement. Applied Optics 1994; 33(7).
[69].K.T. Chen, S.H. Chang, C.H. Chou and Y.H. Liu, Active control by using optical sensors on the acoustic radiation from square plates. Available online 11 January 2007
[70].THE BEGINNINGS OF PIEZOELECTRICITY. Springer Netherlands. (2006)
[71].Daizhong Liu, Jianqiang Zhu, Renfang Xu, Dianyuna Fan, Laser beam automatic alignment in multipass amplifier. Opt. Eng. 43(9) 2066-2070 (September 2004)
[72].Eugene Hecht,Optics, Addison Wesley
[73].Ramón Rodríguez-Vera, Uncertainty analysis of displacements measured byin-plane electronic speckle-pattern interferometry with spherical wave fronts. AppliedOptics, Vol. 44, Issue 7, pp. 1141-1149 March 2005
[74]. S.J. Elliott, Radiation modes and the active control of sound power. J. Acoust.Soc. Am. 94(4) 2194-2204, (1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文