跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮辰帷
研究生(外文):Ruan Chen-wei
論文名稱:模擬超音波燒灼肝腫瘤過程
論文名稱(外文):Numerical investigation of liver tumor ablation by high-intensity ultrasound
指導教授:許文翰
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:98
中文關鍵詞:肝腫瘤高強度超音波灌流acoustic streamingnonlinear Westervelt equation
外文關鍵詞:liver tumoracoustics-thermal-fluidhigh-intensity ultrasoundperfusionconvective coolingacoustic streamingnonlinear Westervelt equation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study is aimed to predict the temperature near a liver tumor using the proposed acoustics-thermal-fluid coupling model. For capable of modeling heat absorption by tissues, the nonlinear acoustic model for simulating the high-intensity ultrasound is chosen so that wave distortion due to finite-amplitude propagation can be taken into account. The nonlinear hemodynamic model is also incorporated into the prediction of thermal dose in the physical domain, which has been split into the tissue domain, where homogenization dominates in perfusion domain and advection heat transfer is essential in the blood domain. Acoustic streaming, which may not be a negligible force in the determination of blood flow acceleration, will be also included in the present therapeutic system. In HIFU (High Intensity Focused Ultrasound), ultrasound is normally associated with the high frequency sound, which makes the calculation of acoustic pressure from the employed nonlinear Westervelt equation very expensive. This motivated us to develop a computationally very efficient alternating direction implicit scheme to solve the three dimensional wave equation by the proposed sixth-order accurate compact scheme for solving the inhomogeneous Helmholtz equation.
Acknowledgements i
Abstract iii
Chapter 1 Introduction 1-1
1-1 Basics in ultrasound 1-1
1-2 Ultrasound application in diagnostic sonography 1-3
1-3 Therapeutic ultrasound 1-3
1-3-1 High intensity focused ultrasound 1-4
1-3-2 Ultrasound drug delivery 1-5
1-4 Liver 1-6
1-5 Outlines of this study 1-7
Chapter 2 Working Equations 2-1
2-1 Nonlinear acoustic equation 2-1
2-2 Energy equation for tissue by ultrasound 2-6
2-3 Acoustic streaming hydrodynamic equations 2-7
Chapter 3 Numerical Methods 3-1
3-1 Three-point sixth-order scheme for inhomogeneous Helmholtz equation 3-1
3-2 Three-point sixth-order scheme for Westervelt equation 3-3
3-3 Verification of the Helmholtz scheme 3-4
3-3-1 One-dimensional Helmholtz equation 3-5
3-3-2 Three-dimensional Helmholtz equation 3-6
3-3-3 Analytic validation of Westervelt equation 3-8
Chapter 4 Incident Ultrasonic Field 4-1
4-1 Modeling of incident ultrasound wave 4-1
4-2 Radiation boundary condition 4-10
4-3 Boundary conditions for liver model and vessel 4-15
Chapter 5 Results and Discussion 5-1
Chapter 6 Concluding remarks 6-1
Appendix 1 - 1 -
Appendix 2 - 13 -
References I
http://www.jointrehab.com/therapeutic-ultrasound.htm
Wilkin, H. D., et al. (2004). Influence of Therapeutic Ultrasound on Skeletal Muscle Regeneration Following Blunt Contusion. International Journal of Sports Medicine, 25, 73-77.
Acoustic targeted drug delivery in neurological tissue - Lewis Jr. et al.
The Liver Cancer Study Group of Japan, ”Primary liver cancer in Japan”, Cancer, 60, pp.1400-1411, 1987.
J.S. Huang, D.A. Gervais, and P.R. Mueller, ”Radiofrequency ablation: Review of mechanism, indications, technique, and results”, Chin. J. Radiol., 26, pp. 119-134, 2001.
S.A. Curley, F. Izzo, P. Delrio, L.M. Ellis, J. Granchi, P. Vallone, F. Fiore, S. Pignata, B. Banielle and F. Cremona, ”Radiofrequency ablation of unresectable primary and metastatichepatic malignancies: Results in 123 patients”, Ann. Surg., 230, pp. 1-8, 1999.
[G. Steele and T.S. Ravikumar, ”Resection of hepatic mestastases from colorectal cancer”, Ann. Surg., 210, pp. 127-138, 1989.
Supan Tungjitkusolmun, S. Tyler Staelin, Dieter Haemmerich, Jang-Zern Tasi, Hong Cao and John G. Webster, ”Three-dimensional finite-element analysis for radio-frequency hepatic tumor ablation between”, IEEE Trans. Biomed. Eng., 49(1), 2002.
S.M. Lin and D.Y. Lin, ”Percutaneous local ablation therapy in small hepatocellular carcinoma”, Chang Gung. Med. J., 26(5), pp. 308-313, 2003.
J.P. McGaham P.D. Browning, J.M. Brock and H. Tesluk, ” Hepatic ablation using radiofrequency electrocautery ”, Invest. Radiol., 25, pp. 267-270, 1990.
S.A. Curley, F. Izzo, L.M. Ellis, J.N. Vauthey and P. Vallone, ” Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis ”, Ann. Surg., 232, pp. 381-391, 2000.
Tony W.H. Sheu, C.W. Chou, Eric S.F. Tsai, and P.C. Liang, ”Three-dimensional analysis for radiofrequency ablation of liver tumor with blood perfusion effect”, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 8(4), pp. 229-240, 2005.
M.R. Bailey, V.A. Khokhlova, O.A. apozhnikov, S.G. Kargl, L.A. Crum, Physical mechanism of the therapeutic effect of ultrasound (A review), Acoustical Physics, vol. 49(4), pp. 369-388, 2003.
D.R. Bacon, E.L. Carstensen, Increased heating by diagnostic ultrasound due to nonlinear propagation, J. Acoust. Soc. Am. 88, pp. 26-34, 1990.
Ibrahim M. Hallaj, Robin O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, J. Acoust. Soc. Am.,105 (5), L7-L12, 1999.
E.L. Carstensen, N.D. Mckay, D. Dalecki, T.G. Muir, Absorption of finite amplitude ultrasound in tissues, Acoustica 51, pp. 116-123, 1982.
A.D. Piere, Acoustics, An Introduction to its Physical Principles and Applications, Mc Graw-Hill, New York, Chapter 10, 1981.
W.L. Nyborg, Sonically produced heat in a fluid with bulk viscosity and shear viscosity, J. Acoust. Soc. Am 80, pp. 1133-1139, 1986.
J. Huang, Heating in vascular and flow through tissue phantoms induced by focused ultrasound, Ph. D Thesis, Boston University, 2002.
Ibrahim M. Hallaj, Robin O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, J. Acoust. Soc. Am.,105 (5), L7-L12, 1999.
T. Kamakura, M. Matsuda, Y. Kumamoto, and M.A. Breazeale, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97, pp. 2740-2746, 1995.
K. Matsuda, T. Kamakura, Y. Kumamoto, Build up of acoustic streaming in focused beams, Ultrasonics 34, pp. 763-765, 1996.
Jinlan Huang, R. Glynn Holt, Robin O. Cleveland, and Ronald A. Roy, Experimental validation of atractable medical model for focused ultrasound heating in flow through tissue phantoms, J. Acoust. Soc. Am. 116 (4) pt. 1, pp. 2451-2458, 2004.
Sapareto S.A. and Dewey W.C., Thermal dose determination in cancer therapy, Int. J. Radiat Oncol Bial Phys., 10(6), pp. 787-800, 1984.
Edwige Godlewski and Pierre-Arnaud Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, P446 ~ P448, Springer, 1991
J E Kennedy, MBBS, MRCS, G R ter Haar, MSc, PhD, DSc and D Cranston, DPhil, FRCS, High intensity focused ultrasound, British Journal of Radiology (2003) 76, 590-599
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top