跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅盛峰
研究生(外文):Sheng-Fong Lo
論文名稱:炭化材之基本性質及其竹活性碳對重金屬離子吸附效能之探討
論文名稱(外文):Basic Properties of Bamboo Charcoals and Adsorption acities of Heavy Metal Ions by Bamboo Activated Carbons
指導教授:王松永王松永引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:159
中文關鍵詞:炭化活化視密度電阻係數重金屬離子吸附效能移除效率
外文關鍵詞:CharcoalizationActivationApparent densityElectrical resistivityHeavy metal ionsAdsorption capacityRemoval efficiency
相關次數:
  • 被引用被引用:5
  • 點閱點閱:785
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討孟宗竹及麻竹在昇溫速率1℃/min∼20℃/min,導入500 mL/min氮氣,最高炭化溫度400℃至1600℃(間隔以200℃),持溫1 hr等缺氧條件之炭化材的基本性質,並探討活化溫度為800℃,活化劑以水蒸氣400 mL/hr注入1 hr,所得之竹活性碳,對Pb(Ⅱ)、Cu(Ⅱ)及Cr(Ⅲ)及Cd(Ⅱ)等四種金屬離子水溶液之吸附效能與移除效率,結果歸納如下:
炭化材收炭率會隨著炭化溫度增大而降低,在800℃以上時之收炭率降低漸趨緩和,至1600℃時則減為25.68~27.68%。而其碳元素(C)含量則各為98.38%(孟宗竹炭)與96.48%(麻竹炭)。另竹炭之視密度會隨著炭化溫度升高而增大,與竹炭之收炭率呈相反之趨勢;視密度在1200℃時,孟宗竹炭可達到2.154~2.468 g/cm3而麻竹炭為2.147~2.322 g/cm3,但炭化溫度升至1600℃時,孟宗竹炭反而降低為1.347~1.416 g/cm3,麻竹炭為1.359~1.397 g/cm3。
孟宗竹與麻竹經高溫炭化後,炭化材之收縮率(縱向、弦向與徑向)及體積收縮率均會隨著炭化溫度增高而增大,在400℃∼800℃炭化溫度範圍會急速增大,但800℃∼1200℃炭化溫度範圍則其增加趨勢緩和,且有弦向>徑向>縱向的趨勢。炭化材之電阻係數(ρ, logρ)均會隨炭化溫度增加而減低,當炭化溫度達800℃時,其ρ值各會減低至10Ω•cm又ρ與logρ值均會隨著C元素含量(%)與C/H比值增加而下降,並且以徑向之ρ值大於縱向與弦向。
炭化材之調濕性能(%),炭化溫度1000℃時,孟宗竹炭為3∼3.5%,會顯著大於其他炭化溫度者,而麻竹炭則在600∼800℃者會達到6.31-6.42%較大,1000℃時反而會降低。以吸濕速度曲線A=A0(1-e-kt)關係式表示時,其A0值均兩種竹炭均以1000℃炭化溫度者較大,孟宗竹炭為134.89-167.75 mg/g,麻竹炭為154.07-172.67 mg/g,但k值則與炭化溫度,昇溫速率間無一定趨勢。
就孟宗竹與麻竹竹炭之微細構造觀察,兩種竹材炭化後仍可維持竹材原有之導管,薄壁組織,與纖維組織之架構,但隨炭化溫度之增高,當炭化溫度達1200∼1600℃時,可看到導管腔內,薄壁細胞壁上附有各種不同形狀之結晶,而其成分主要為矽(Si)。
孟宗竹與麻竹活性碳對於Pb(Ⅱ)、Cu(Ⅱ)及Cr(Ⅲ)及Cd(Ⅱ)等四種金屬離子水溶液之吸附效能最適的攪拌時間各為2-8 hr與1 hr,而孟宗竹活性碳對重金屬離子吸附效能依序為Pb(Ⅱ)> Cu(Ⅱ)> Cr(Ⅲ)> Cd(Ⅱ),而麻竹活性碳則為Pb(Ⅱ)> Cd(Ⅱ)> Cu(Ⅱ)> Cr(Ⅲ) 。對重金屬離子之最大移除效率所需活性碳量各為Pb(Ⅱ):孟宗竹活性碳0.1-0.3 g;100%,麻竹活性碳0.1 g;100%。、Cu(Ⅱ):孟宗竹活性碳0.5 g;100%,麻竹活性碳0.1-0.3 g;100%。Cr(Ⅲ):孟宗竹活性碳0.5 g;53.1%(S1C1group),100%(S2C1group);麻竹活性碳0.3 g;100%。Cd(Ⅱ):孟宗竹活性碳0.5 g;43.9-65.8%,麻竹活性碳0.5 g;100%。
The purpose of this research was to investigate different carbonization and activation processes of bamboo charcoals made from moso bamboo(Phyllostachys pubesens) and ma bamboo(Dendrocalamus latiflorus)in order to realize the basic properities, adsorption capacity, and removal effiency of heavy metal ions (Pb(Ⅱ), Cu(Ⅱ), Cr(Ⅲ), Cd(Ⅱ)). The bamboo charcoals were carbonized at final temperatures ranging from 400℃ to 1600℃ and temperature with increasing rate from 1℃/min to 20℃/min. Nitrogen at normal atmospheric pressure was induced into carbonizing chamber in all cases. Carbon was activated at 800℃ for one hour and steam as activator induced 400 mL per hour. Results were summarized as follows:
The yields of moso bamboo carbonized at final temperatures ranging from 200℃ to 1600℃ were different. When material was heated to 200ºC, the yields were 98.74% to 99.15%. The charcoal yields decreased sharply between 200℃and 600℃, and yield appeared to steady within 24.18~28.76% at 1200℃. At 1600℃, yields were 25.68~27.68%. It showed that the yields of two bamboo charcoal decreased with the increasing of the final temperatures. It also showed that carbon content of two bamboo charcoals increased with the final temperature increasing while hydrogen and oxygen content decreased. Carbon content of moso bamboo and ma bamboo carbonized at the final temperature of 1600℃ was 98.38% and 96.48%, respectively. Comparing the yields of two bamboos carbonized at three different temperature increasing rates of 1℃/min, 3℃/min, and 5℃/min, it showed there was no significant difference of charcoal yield among those. However, it showed significant difference of lower temperature increasing rate from higher ones of 10℃/min and 20℃/min. The apparent density of moso bamboo and ma bamboo carbonized at the final temperature of 1200℃ were 2.154~ 2.468 (g/cm3) and 2.147~2.322 (g/cm3), respectively. At 1600℃, apparent density decreased apparently to 1.347~1.416 (g/cm3) of moso bamboo charcoal and 1.359~1.397 (g/cm3) of ma bamboo charcoal, respectively.
The shrinkage of longitudinal, tangential, and radial directions and volume of two bamboo charcoals increased with the final carbonization temperature rapidly between 400℃ and 800℃. It showed steady between 800℃ to 1200℃ and the largest shrinkage was occurred in tangential direction, on the other the axial direction was the least one. The electrical resistivity (ρ) of these two kinds of bamboo charcoals decreased with the increasing of the carbonized temperature. When the carbonized temperature increased to 800℃ and 1000℃, the ρ values decreased to 10Ω•cm and 10-1Ω•cm∼10-2Ω•cm, respectively.
Bamboo charcoals showed larger values of conditioning hygroscopic capacity (effective adsorption capacity, %) at carbonization temperature of 1000℃ for moso bamboo charcoal, and carbonization temperature of 600℃∼800℃ for ma bamboo charcoal. When the adsorption rate of curve expressed by the formula of A=A0(1-e-kt), coefficients of A0 and k were the adsorption weight and adsorption rate until equilibrium condition, respectively. The larger A0 showed at carbonization temperature of 1000℃ for moso bamboo and ma-bamboo charcoals. However, ma bamboo charcoal was slightly larger than that of moso bamboo charcoal. Coefficient of k was showed no significant difference among various carbonized temperatures, and temperature increasing rates.
Moso and ma bamboo charcoals could maintained their original structure of vessel, parenchyma and fiber tissues after carbonization treatment, when the carbonized temperature increased to 1,200∼1,600℃. It was found that the various shape of crystals in the vessel lumen and parenchyma walls. The crystals in spined-shape, granular-shape, and flake-bar-shape were found in moso-bamboo charcoals, and the circular-shape, rectangular-shape, multilayer-block-shape was found in ma bamboo charcoals. The main component of crystals was silica (Si).
The optimal agitation times of activated moso bamboo carbon and ma bamboo carbon to remove heavy metal ions from aqueous solution were 2-8 hours and 1 hour, respectively. The adsorption capacity of activated moso bamboo carbon removal 4 heavy metal ions as follow: Pb(Ⅱ)> Cu(Ⅱ)> Cr(Ⅲ)> Cd(Ⅱ)while activated ma bamboo carbon was Pb(Ⅱ)> Cd(Ⅱ)> Cu(Ⅱ)> Cr(Ⅲ). The maximum weight to remove heavy metal ions from aqueous solution of activated moso-bamboo carbon and removal efficiency were 0.1~0.3 g (Pb(Ⅱ): 100%)), 0.5 g (Cu(Ⅱ):100%), 0.5 g (Cr(Ⅲ):53.1% (S1C1group) ;100% (S2C1group)), 0.5 g (Cd(Ⅱ):43.9-65.8%). And the maximum weight to remove heavy metal ions of activated moso-bamboo carbon and removal efficiency were 0.1 g (Pb(Ⅱ): 100%), 0.1-0.3 g (Cu(Ⅱ):100%), 0.3 g (Cr(Ⅲ):100%), 0.5 g (Cd(Ⅱ):100%).
目 錄

摘 要 I
Abstract III
圖 目 錄 IV
表目錄 X
第一章 前言 1
第二章 文獻回顧 3
2.1 炭化 3
2.2活性碳 5
2.2.1活性碳的構造 5
2.2.2活性碳的種類 7
2.2.3活性碳的製造 8
2.2.4活性碳的孔隙結構 9
2.2.5活性碳的表面性質 11
2.3比表面積之量測原理 14
2.3.1 Langmuir等溫吸附理論 15
2.3.2 BET等溫吸附理論 15
2.4吸附理論 17
2.4.1等溫吸附模式 18
2.5銅、鉛、鉻及鎘之特性 21
2.6竹炭及竹活性碳相關研究 23
第三章 材料與方法 29
3.1材料 29
3.2方法 29
3.2.1.竹材之炭化 31
3.2.2竹材之活化 34
3.2.3比重之測定 38
3.2.4.收炭率與收縮率之測定 38
3.2.5.視密度測定 39
3.2.6.電阻係數測定 39
3.2.7.C、H、O元素分析 39
3.2.8.掃描式電子顯微鏡-能量散射分析儀之觀察 40
3.2.9.X射線繞射圖譜分析(XRD) 41
3.2.10比表面積性質之測定 42
3.2.11傅立葉轉換紅外線光譜分析 44
3.2.12吸脫濕性質試驗 44
3.2.13重金屬離子吸附性質之測定 45
第四章 結果與討論 46
4.1 收炭率 46
4.2收縮率 52
4.3 比重 59
4.4 竹炭之C、H、O元素組成 60
4.5 視密度 67
4.6電阻係數 73
4.7 掃描式電子顯微鏡-能量散射分析儀 81
4.7.1孟宗竹炭之SEM特徵 81
4.7.2麻竹炭之SEM特徵 85
4.7.3 竹炭表面能量散射分析 88
4.8 X射線繞射圖譜分析 92
4.9 比表面積性質 97
4.9.1炭化處理對比表面積之影響 97
4.9.2 CO2活化處理對比表面積之影響 99
1.一段製程 99
2.二段製程 102
4.9.3 水蒸氣活化處理對比表面積之影響 105
1.一段製程 105
2.二段製程 106
4.9.4竹活性碳孔隙特性 108
4.10表面官能基 112
4.11竹炭調濕性能 118
4.12重金屬離子吸附效能 126
4.12.1 pH之效應 128
4.12.2竹活性碳吸附水中重金屬離子之效應 134
第五章 結論 149
第六章 參考文獻 152
王松永、羅盛峰 (2001)竹炭之研製及其新用途之開發(1)。中正農業科技社會公益基金會。共40頁
王松永、羅盛峰 (2002)竹炭之研製及其新用途之開發(2)。中正農業科技社會公益基金會。共40頁。
王松永、羅盛峰、蔡明秀 (2006)奈米化竹活性碳之重金屬離子吸附性能探討,農委會林務局計畫報告,94農科-11.2.2-務-e1(1),共15頁。
王俊凱 (2004)麻竹與桂竹炭化物之碳化條件對其特性及吸附效能之影響。國立台灣大學森林學研究所碩士論文。115頁。
江右君 (1999)活性碳物化特性對揮發性有機物吸附之影響。國立台灣大學工程學研究所博士論文。
吳順昭、呂兆良 (1987)台灣產竹材維管束構造之研究。台大實驗林研究報告1(1):21-44。
林務局網站: http://www.forest.gov.tw
洪崇彬 (2002)木質廢棄物製造之碳化材的基本性質與利用。國立台灣大學森林學研究所博士論文。133頁。
洪崇彬、王松永 (1998)木質廢料之碳化物的基本性質及用途。林產工業17(3): 595-606。
洪崇彬,楊德新,王松永 (2000) 木炭基本物理特性之探討(Ⅰ)─碳化材之收炭率、收縮率與真比重。台大學農學院實驗林研究報告14(1):11-20。
楊德新,洪崇彬,王松永 (2000) 木炭基本物理特性之探討(II)─杉木炭之游離甲醛吸附與水質淨化。台大學農學院實驗林研究報告14(3):109-116。
楊萬發譯 (1987)表面化學及膠體化學之基本原理。水及廢水處理化學。國立編譯館。第214-218頁。
鄧茂華 (2003)比表面積,實用儀器分析,王明光與王敏昭編著。合記圖書出版社。第125-159頁。
謝榮生 (1985)台灣產竹材超微構造之研究。台灣大學森林研究所碩士論文,97頁。
夏滄琪、黃國雄、王瀛生和劉瓊霦 (2003)談竹炭性質之檢測與分析。林業研究專訊(54):38-45。
陳弘彬 (2003)孟宗竹炭與活性碳之研製。國立屏東科技大學森林系碩士論文。120頁。
陳明益 (2006)機能性竹炭之研製。國立屏東科技大學森林系碩士論文。128頁。
翁儷芯 (2005)木陶瓷製備條件對其基本性質及石墨化度行為之影響。國立台灣大學森林學研究所博士論文。211頁。
曾如玲 (2002)水蒸氣活化法製備松木活性碳及吸附特性。國立台灣大學環境工程研究所碩士論文。88頁。
劉雅瑄 (2001)重金屬Cu(Ⅱ), Cr(Ⅲ), Pb(Ⅱ)於活性碳表面特性之研究。國立台灣大學環境工程學研究所碩士論文。75頁
蔡明秀 (2006)竹炭製備條件對重金屬離子吸附效應。國立台灣大學森林學研究所碩士論文。85頁。
蘇裕昌、何振隆 (2003)竹材炭化及活化技術之研究。林試所試驗報告 產學合作計畫 第1-11頁。
羅盛峰、王松永 (2007)炭化條件對孟宗竹與麻竹炭化物基本性質之影響(一)收炭率、收縮率、視密度及元素分析。林產工業26(2):44-58。
浙江林學院林工系 (1991)竹稈與竹葉的微量元素研究。竹子研究匯刊 10(1)57-63。
今井淳司、山田雅、欽二、吉田明、安藤三津雄 (2000)各種木質系廢材炭化複合物吸脫濕性能。第50回日本木材學會研究發表要旨,京都,p539
三城昭義 (1996) 木炭の性質と機能性。木材の科學と利用技術IV.2產業﹐生活廢棄物﹐p86-89﹐日本木材學會編。
日本住宅木材技術編 (1994)木質廢棄物再資源化技術開發事業報告書(III)﹐pp106-112。
井出 勇、石原茂久、樋口尚登、西川昌信(1994)竹炭からの機能性炭素複合材料素材の開発とその応用。材料43(485):152-157。
平田利美 (1995)木材およびセルロ-スの熱分解速度論。木材学会誌 41(10):879-886。
石原茂久 (1996a)熱による機能性木質複合材料素材の開發。木材研究.資料 第32號23-29。
石原茂久 (1996b)木質系炭素材材料素材開發の新しい展開。木材学会誌 42(8)717-723。
石原茂久 (1999)機能性炭素材料としての木炭。J. Soc. Mat. Sci. Japan 48(5)473-482。
北村寿宏、片山裕之 (2003)重金屬を含む廃棄物問題の現狀と課題。木材保存29(1):2-7。
本間千晶、佐野弥栄子、窪田 実、梅原勝雄、駒澤克己 (2000)窒素及び空気下で製造したトドマツ材炭化物の化学構造とアソモニア吸着能。木材学会誌 (46):348-354。
安部郁夫(1996)木質碳化物吸著劑の製造と利用。木材工業 51(7):294-300。
佐佐木 陽、蓬田 茂、梅津芳生、成田榮一 (2001)木材炭化に及ぼす硫化水素型溫泉前処理の影響。木材學會誌 47(2):171-179。
森美知子、斎藤幸恵、信田 聡、有馬孝禮 (2000)木質系材料から調製された炭化物質の吸著特性。木材学会誌 46(4):355-362。
藤原 敏、嶋一徹、千葉喬三 (2003)竹炭基本的特性と吸、脫濕性。木材学会誌 49(5):331-341。
Ahmendna, M., W.E. Marshall, and R.M. Rao (2000) Production of granular acticated carbon from select and agricultural by- products and evaluation of their physical, chemical and adsorption properties. Bioresource technology. 71 :113- 123.
Amuda, O.S., A.A. Giwa, and I.A. Bello (2007) Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochemical Engineering Journal. 36 :174-181.
Bansal, R.C., J.B. Donnet, and F. Stoeckli (1988) Active carbon, Marcel Dekker Inc., New York.
Basta, N., G. Ondrey and S. Moore (1994) Adsorption holds its own, Chem. Eng., Nov: 39-43.
Boehm H.P. (1994) Some aspects of the surface chemistry of carbon black and other carbons, Carbon. 32:759-769.
Brown, P.A., S.A. Gill, S.J. Allen (2002) Metal removal from wastewater using peat , Water research. 34(16):3907-3916.
Brunner P. H. and P. V. Roberts (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon. 18 (3):217-224.
Byrne, C.E. and D.C. Nagle (1997a) Carbonization of wood for advanced materials application. Carbon. 35 (2): 259-266.
Byrne, C.E. and D.C. Nagle (1997b) Carbonized wood monoliths characterization. Carbon. 35(2): 267-273.
Byrne, J.F. and H. Marsh (1995) Introductory overview. In ”Porosity in Carbons” (J. W. Patrick Ed.). John & Sons Inc. New York. pp. 1-48.
Cheng, H.M., H. Endo, Toshihiro Okabe, Kouji saito and G.-B. Zheng (1999) Graghitization behavior of wood ceramics and bamboo ceramics as determined by X-ray diffraction. Journal of Porous Materials. 6: 233-237.
Corapcioglu, M.O. and Huang, C.P. (1987) The surface acidity and characterization of some commercial activated carbons. Carbon. 25: 569-578
Dong, D., Y.M. Nelson, L.W. Lion, M.L. Shuler and W.C. Ghiorse (2000)Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides , Water research. 34:427-436.
Dubinin, M.M., G.M. Plarnik and E.F. Ezverina(1964)Integrated study of the porous structure of activated carbon from carbonized source. Carbon. 2: 261-268.
Elder T.J., W.K. Murphey and P.R. Blankenhorn (1979) A note on the thermally induced changed of intervessel pits in black Cherry (Prunus sertina ) Wood and Fiber. 11(3): 179-183.
Fanning, P.E. and M.A. Vannice (1993) A drifts study of formation of surface groups on carbon by oxidation, Carbon. 31(5):721-730.
Fornwalt, H.J. and R.A. Hutchins(1966)Purifying liquids with activated carbon. Chemical Engineering. 73:179-184.
Fujisawa M., T. Hata, P. Rronsveld, V. Castro, F. Tanaka, H. Kikuchi, T. Furuno and Y. Imamura (2004) SiC/C composites prepared from wood-based carbons by pulse current sintering with SiO2: Electrical and thermal properties. Journal of the European Ceramic Society. 24 :3575-3580..
Gregg, S. J. and K. S. W. Sing (1982) Adsorption, surface area and porosity. Academic Press, London and New York. 371pp.
Guo Y. and R.M. Bustin (1998) FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology. 37 : 29-53.
Han James S.(1998)Properties of nonwood fibers. TAPPI 1998 North American Nonwood Symposium at Atanata, GA, February 17~18. PP.1-12.
Jankowska, H., Swiatkowski, A. and Choma, J. (1991) Activated Carbon, Ellis Horwood, New York.
Kadirvelu, K., C. Faur-Brasquet and P. Le Cloirec(2000)Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir. 16:8404-8409.
Kadirvelu, K., Kavipriya, M., Karthika, C., Vennilamani,N., Pattabhi, S. (2004) Mercury (II) adsorption by activated carbon made from sago waste, Carbon. 42 :745-752.
Kinoshita, K. (1988) Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, NY.
Kobya M., E.Demirbas, E. Senturk, M. Ince (2005) Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone, Bioresource Technology. 96 :1518-1521.
Kumar M. and R. C. Gupta (1993) Electrical resistivity of Acacia and Eucalyptus wood chars. Journal of Materials Science (28): 440-444.
Kumar M. and R. C. Gupta (1995) Scanning electron microscopic study of Acacia and Eucalyptus wood chars. Journal of Materials Science. 30 : 544-551.
Lilibeth P.N., T. Hata, Y. Kurimoto, S. Ishihara and T. Kajimoto(1998)Removal of mercury and other metals by carbonized wood powder from aqueous solutions of their salts, , Journal of wood science. 44:237-243.
Lilibeth P.N., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara and Y. Imamara (2001a) Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process, Journal of wood science. 47 :48-57.
Lilibeth P.N., Y.Kurimoto, M.Aoyama, K.Seki, S. Doi, T. Hata, S. Ishihara and Y. Imamara (2001b) Adsorption of mercury by sugi wood carbonized at 1000℃, Journal of wood science. 47:159-162.
Lin, C. C.(1982)Application of granular activated carbon for water and wastewater purification. Ph. D. Dissertation. University of Taxas at Dallas. USA. pp.15-36.
Lowell, S. and Shields, J.E. (1991) Powder Surface Area and Porosity, 3rd Ed., Chapman & Hall, New York, USA.
Machida, M., R. Yamazaki, M. Aikawa, and H. Tatsumoto(2005)Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Separation and Purification Technology. 46:88-94.
Manju, G.N., K. Anoop Krishnan, V.P. Vinod and T.S. Anirudhan(2002)An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron(Ⅲ)oxide. Journal of Hazardous Materials. B91:221-238.
McGuire, M. J. and Suffet, I. H.(1978) adsorption of organics from domestic water supplies, Journal AWWA, Water Technology/Quality, November.
Nishimiya K., T. Hata, Y. Imamura and S. Ishihara (1998) Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy, J. Wood Sci. 44(1) :56-62
Pendyal, B. M.M. Johns, W.E. Marshall, M. Ahmendna, and R.M. Rao(1999)The effect of binders and agricultural by- products on physical and chemical properties of granular activated carbons. Bioresource technology. 68:247-254.
Puri B. R. and R.C. Bansal (1964) studies in surfacechemistry of carbon blacks: part Ⅱ surface acidity in relation to chemisorbed oxygen, Carbon. 1 :189-194.
Puziy A.M., O.I. Poddubnaya, A.Martinez-Alonso, F. Suarez-Garcia, J.M.D. Tascon (2002) Synthetic carbons activated with phosphoric acid Ⅰ. Surface chemistry and ion binding properties. Carbon. 40: 1493-1505
Rodriguez Reinoso, F. (1998) The role of carbon materials in heterogeneous catalysis, Carbon. 36: 159-175.
Rodriguez Reinoso, F. (1997) Introduction to Carbon Technologies, ed. H. Marsh, E. A. Heintz and F. Rodrigurz Reinoso, Secretariado de Publicaciones, University of Alicante, Alicante, Spain,p35.
Ruthven, D.M. (1984) Principles of adsorption and adsorption process., John Wiley & Sons, New York, NY.
Sciban M. and M. Klasnja (2004) Wood sawdust and wood originate mwterials as adsorbents for heavy metal ions. Holz Roh Werkst. 62: 69-73.
Sing, K.S.W., D.H.Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewsla (1985) IUPAC Recommendations, 1984 Reporting physical adsorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57: 603-619.
Struis, R. P. W. J., C. von Scala, S. Stucki and R. Prins(2002)Gasification reactivity of charcoal with CO2 Part Ⅱ:Metal catalysis as a function of conversion. Chemical Engineering Science. 57:3593-3602.
Yamane Takeshi, Ishihara Shigehisa, and Hata Toshimitu (1999) Effects of sintering temperature on structural changes of wood Charcoal, TANSO 186:2-6.
Teker M.,M. Imamoglu (1999) Turk, J. Chem. 23: 185-
Ücer A., A. Uyanik, S.F. Aygün (2006) Adsorption of Cu(Ⅱ) , Cd (Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) ions by tannic acid immobilished activated carbon. Separation and Purification Technology. 47:113-118.
Wang S.Y., M. H. Tasi, S. F. Lo and M. J. Tasi (2008) Effects of manufacturing condictions on the adsorption capacity of heavy metal ions by Nakino bamboo charcoal. Bioresource Technology. 99(15): 7027–7033.
WHO (2004)Guidelines for drinking-water quality. In: Chemical Fact Sheet. World Health Organizttion, Geneva.
WHO (2006)Guidelines for drinking-water quality, 1st Addedum. In Chemical Fact Sheet. World Health Organizttion, Geneva.
Wigmans, T.(1989)Industrial aspects of production and use of activated carbons. Carbon. 27:13.
Wu, F.-C., R.-L. Tseng, R.-S. Juang (1999) Preparation of activated carbon from bamboo and their adsorption abilities for dyes and phenol. Journal of Environmental Science and Health. A34(9):1753-1775.
Yatagai, M., R. Ito, T. Ohira and, K. Oba (1995) Effect of charcoal on purification of wastewater. Mokuzai Gakkaishi. 41(4): 425-432.
Zollfrank Cordt and Heino Sieber (2004) Microstructure and phase morphology of wood derived biomorphous SiSiC-ceramics. Journal of the European Ceramic Society. 24 : 495-506.
Zuo S.-L.,Gao S.-Y., Yuan X.-G., Xu B.-S. (2003) Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Ifrared and elemental analysis. Journal of Forestry Research. 14(1):75-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top