跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡君
研究生(外文):Yi-Chun Chen
論文名稱:農桿菌virB基因表現及調控之研究
論文名稱(外文):Expression and regulation analyses of virB genes in agrobacterium tumefaciens
指導教授:賴爾珉陳昭瑩陳昭瑩引用關係
指導教授(外文):Erh-Min Lai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:農桿菌酚類化合物virB毒性基因基因表現基因調控第四型分泌系統
外文關鍵詞:Agrobacterium tumefaciensacetosyringonevir regulongene expressiongene regulationtype IV secretion system
相關次數:
  • 被引用被引用:2
  • 點閱點閱:724
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農桿菌是一植物病原細菌,其可感染大多數的雙子葉植物,產生腫瘤的病徵;腫瘤的產生係由於農桿菌會將其T-DNA (Transferred DNA) 切下並送至植物基因組中,而將植物細胞轉形為腫瘤。當植物細胞受傷時會釋出酚類化合物(例如acetosyringone,AS),進而誘導農桿菌ㄧ巨大質體Ti (tumor-inducing) 質體之毒性基因 (vir genes) 的表現,其表現係由VirA/VirG two-component 系統所調控,故稱為vir regulon。 vir regulon中之virB操縱子包含 (virB1~virB11)會轉譯出11個VirB蛋白質,與VirD4組成第四型分泌系統,負責T-DNA及其他基質的轉移。農桿菌培養於含AS之酸性AB-MES minimal培養基中可有效地誘導毒性基因在轉錄層級之表現,但在酸性rich培養基中是否可有效地誘導其研究結果卻不一致,而對於毒性基因在後轉錄層級的調控也未有系統性的分析。所以,本論文利用已知適合毒性基因誘導的酸性AB-MES minimal培養基,以及選用酸性的523 rich培養基當作控制組,針對virB毒性基因受AS誘導表現之轉錄、轉譯及蛋白質穩定狀態進行探討,期了解virB基因是否在不同培養基中受到不同層級的調控。首先,利用轉錄融合分析毒性基因啟動子的活性,發現virB、virD及virE啟動子在AB-MES及523培養基皆可有效地進行轉錄,但在AB-MES中較523培養基在AS誘導前期有較高的表現;進一步針對virB毒性基因之表現再使用西方雜合反應分析VirB蛋白質穩定狀態,發現不同的VirB蛋白質在不同培養基中累積的狀況不同,可將其概分為三群。第一群包含VirB2、VirB7及VirB9,此群蛋白質在AS誘導前期(16小時前)在AB-MES中之累積量較高於其在523中之累積量;第二群包含VirB1、VirB4、VirB5、VirB8及VirB11,此群蛋白質在AS誘導後期 (24小時後) 在AB-MES中之累積量較高於523中之累積量;第三群包含VirB3及VirB10,此群蛋白質在AB-MES中之累積量遠高於其在523中之累積量。再透過轉譯融合分析VirB蛋白質轉譯效率,與virB啟動子活性比較,發現轉譯融合菌株除了VirB1-GFP無法偵測到GFP螢光值,其餘VirB2-GFP、VirB3-GFP及VirB10-GFP皆能有效地被AS誘導表現,推測當農桿菌523培養基受AS誘導時,可有效率地轉錄及轉譯出VirB蛋白質,但不同之VirB蛋白質則有不同的穩定度。利用IncQ質體RSF1010經由VirB/D4在農桿菌間之轉移試驗,發現RSF1010在523培養基的轉移效率極低,為在AB-MES培養基之0.41%,推測在523培養基RSF1010之低轉移效率可能係由於部分VirB蛋白質之低累積量,進而無法組合成有功能之T4SS來進行DNA之轉移。
Agrobacterium tumefaciens is a plant pathogenic bacterium, the causal agent of crown gall diseases on wide range of dicotyledons. The tumors are caused by transferring T-DNA (Transferred DNA) from bacterium into the host plant genome. A. tumefaciens is capable of sensing the plant-released signal molecules such as sugars and phenolic compounds (e.g. acetosyringone,AS) to activate the expression of virulence (vir) genes encoded by the tumor-inducing (Ti) plasmid. Among these, the virB operon encoding 11 VirB proteins and VirD4 comprises a type IV secretion system (T4SS) to transfer T-DNA and effectors from bacteria into the host plant cells. AS-induced vir gene expression is regulated at transcriptional level via VirA/VirG with maximal activity in acidic AB-MES minimal medium. However, it is not clear whether vir genes can be efficiently induced by AS when grown in rich medium or are regulated at posttranscriptional levels. In this study, we aim to understand whether virB genes are expressed and regulated differently when A. tumefaciens is grown in different culture media for AS induction. The virB gene expression was analyzed at transcriptional/translational levels and protein steady state when induced by AS in both acidic AB-MES minimal medium and acidic 523 rich medium. By transcriptional fusion to gfp (green fluorescent protein), the promoter activities of virB, virD, and virE are efficiently induced when grown in either AB-MES or 523 media although the promoter activities are higher in AB-MES medium than in 523 medium at early time points. To further investigate virB gene expression at protein levels, Western blotting and translational fusions were carried out. By Western blot analysis, three groups of VirB proteins are classified based on their protein accumulation patterns in both AB-MES and 523 cultures. VirB2, VirB7, and VirB9 belong to group I as they accumulate at higher levels at early time points (up to 16 hr) in AB-MES in comparison to those in 523. The second group of proteins include VirB1, VirB4, VirB5, VirB8, and VirB11 as they accumulate at higher levels at late time points (after 24 hr) in AB-MES in comparison to those in 523. The third group includes VirB3 and VirB10 as they accumulate at very low levels in 523, in contrast to those at much higher levels in AB-MES. Interestingly, several VirB-GFP translational fusions result in efficient AS-induced activity in both AB-MES and 523 media. By VirB/D4-mediated IncQ plasmid RSF1010 transfer between A. tumefaciens strains, only very little transfer events are detected when conjugation was performed on 523. In conclusions, our data suggest that virB is transcribed and translated efficiently when A. tumefaciens was induced by AS in both AB-MES and 523 media. However, while all tested VirB proteins accumulated stably when grown in AB-MES medium, certain VirB proteins are less stable when grown in 523 medium, which may lead to the failure in assembly of the functional T4SS for DNA transfer.
口試委員會審定書....................................I
誌謝...............................................II
中文摘要..........................................III
英文摘要............................................V
表目錄...........................................VIII
圖目錄.............................................IX
壹、前言............................................1
一、農桿菌簡介...................................1
二、農桿菌研究的重要里程碑.......................1
三、農桿菌感染植物的分子機制.....................3
四、農桿菌毒性基因的表現及調控之研究.............8
貳、研究目的.......................................11
参、研究材料與方法.................................12
肆、研究結果.......................................24
一、農桿菌在不同培養基其virB基因表現的分析......24
二、 IncQ質體 RSF1010的轉移效率試驗.............30
伍、討論...........................................31
參考文獻...........................................36
附錄...............................................70
附錄圖.............................................75
Alt-Moerbe, J., P. Neddermann, J. von Lintig, , & J.
Schroder, (1988) Temperature-sensitive step in Ti
plasmid vir-region induction and correlation with
cytokinin secretion by Agrobacteria. Mol Gen Genet
213:1–8.
Aly, K. A. & C. Baron, (2007) The VirB5 protein localizes
to the T-pilus tips in Agrobacterium tumefaciens.
Microbiology 153: 3766-3775.
Anand, A., S. R. Uppalapati, C. M. Ryu, S. N. Allen, L.
Kang, Y. Tang & K. S. Mysore,(2008) Salicylic acid
and systemic acquired resistance play a role in
attenuating crown gall disease caused by
Agrobacterium tumefaciens. Plant Physiol 146:
703-715.
Anderson, L. B., A. V. Hertzel & A. Das, (1996)
Agrobacterium tumefaciens VirB7 and VirB9 form a
disulfide-linked protein complex. Proc Natl Acad Sci
U S A 93:8889-8894.
Aoyama, T., M. Takanami & A. Oka, (1989) Signal structure
for transcriptional activation in the upstream
regions of virulence genes on the hairy-root-inducing
plasmid A4. Nucleic Acids Res 17: 8711-8725.
Atmakuri, K., E. Cascales & P. J. Christie, (2004)
Energetic components VirD4, VirB11 and VirB4 mediate
early DNA transfer reactions required for bacterial
type IV secretion. Mol Microbiol 54: 1199-1211.
Backert, S. & T. F. Meyer, (2006) Type IV secretion
systems and their effectors in bacterial
pathogenesis. Curr Opin Microbiol 9:207-217.
Ballas, N. & V. Citovsky, (1997) Nuclear localization
signal binding protein from Arabidopsis mediates
nuclear import of Agrobacterium VirD2 protein. Proc
Natl Acad Sci U S A 94: 10723-10728.
Baron, C., M. Llosa, S. Zhou & P. C. Zambryski, (1997)
VirB1, a component of the T-complex transfer
machinery of Agrobacterium tumefaciens, is processed
to a C-terminal secreted product, VirB1. J Bacteriol
179: 1203-1210.
Beijersbergen, A., A. D. Dulk-Ras, R. A. Schilperoort & P.
J. Hooykaas, (1992)Conjugative transfer by the
virulence system of Agrobacterium tumefaciens.
Science 256: 1324-1327.
Berger, B. R. & P. J. Christie, (1994) Genetic
complementation analysis of the Agrobacterium
tumefaciens virB operon: virB2 through virB11 are
essential virulence genes. J Bacteriol 176: 3646-3660.
Bevan, M. W. & M. D. Chilton, (1982) T-DNA of the
Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:
357-384.
Bolton, G. W., E. W. Nester & M. P. Gordon, (1986) Plant
phenolic compounds induce expression of the
Agrobacterium tumefaciens loci needed for virulence.
Science 232: 983-985.
Boone, D. R., R. W. Castenholz, & G. M. Garrity, (2001)
Bergey''s manual of systematic bacteriology / George
M. Garrity, editor-in-chief, 2nd ed. Springer, New
York.
Braun, A.C. (1947) Thermal studies on the factors
responsible for tumor initiation in crown-gall. Am J
Bot 34:234–240.
Brencic, A. & S. C. Winans, (2005) Detection of and
response to signals involved in
host-microbe interactions by plant-associated
bacteria. Microbiol Mol Biol Rev 69: 155-194.
Burr, T. J., C. Bazzi, S. Sule, & L. Otten, (1998) Crown
gall of grape: biology of
Agrobacterium vitis and the development of disease
control strategies. Plant
Dis 82:1288-1297.
Cangelosi, G. A., R. G. Ankenbauer & E. W. Nester, (1990)
Sugars induce the Agrobacterium virulence genes
through a periplasmic binding protein and a
transmembrane signal protein. Proc Natl Acad Sci U S A
87: 6708-6712.
Cangelosi, G. A., L. Hung, V. Puvanesarajah, G. Stacey, D.
A. Ozga, J. A. Leigh & E.W. Nester, (1987) Common
loci for Agrobacterium tumefaciens and Rhizobium
meliloti exopolysaccharide synthesis and their roles
in plant interactions. J Bacteriol 169: 2086-2091.
Cangelosi, G. A., G. Martinetti, J. A. Leigh, C. C. Lee,
C. Theines & E. W. Nester,(1989) Role for [corrected]
Agrobacterium tumefaciens ChvA protein in export
of beta-1,2-glucan. J Bacteriol 171: 1609-1615.
Cascales, E. & P. J. Christie, (2003) The versatile
bacterial type IV secretion systems. Nat Rev
Microbiol 1: 137-49.
Cascales, E. & P. J. Christie, (2004) Definition of a
bacterial type IV secretion pathway for a DNA
substrate. Science 304: 1170-1173.
Cavara, F. (1897) Tubercolosi della vite. Intorno alla e
ziologia de alcune malattie di
piante coltivate. Stazoni Sperimentale Agrarie
Italiane 30:483–487.
Chilton, M. D., M. H. Drummond, D. J. Merio, D. Sciaky, A.
L. Montoya, M. P. Gordon & E. W. Nester, (1977)
Stable incorporation of plasmid DNA into higher plant
cells: the molecular basis of crown gall
tumorigenesis. Cell 11: 263-271.
Cho, H. & S. C. Winans, (2005) VirA and VirG activate the
Ti plasmid repABC operon, elevating plasmid copy
number in response to wound-released chemical
signals. Proc Natl Acad Sci U S A 102: 14843-14848.
Christie, P. J., J. E. Ward, Jr., M. P. Gordon & E. W.
Nester, (1989) A gene required for transfer of T-DNA
to plants encodes an ATPase with autophosphorylating
activity. Proc Natl Acad Sci U S A 86: 9677-9681.
Christie, P. J., (1997) Agrobacterium tumefaciens T-
complex transport apparatus: a paradigm for a new
family of multifunctional transporters in eubacteria.
J Bacteriol 179: 3085-3094.
Christie, P. J., (2004) Type IV secretion: the
Agrobacterium VirB/D4 and related conjugation
systems. Biochim Biophys Acta 1694: 219-234.
Christie, P. J., K. Atmakuri, V. Krishnamoorthy, S.
Jakubowski & E. Cascales, (2005) Biogenesis,
architecture, and function of bacterial type IV
secretion systems. Annu Rev Microbiol 59: 451-485.
Citovsky, V., A. Kapelnikov, S. Oliel, N. Zakai, M. R.
Rojas, R. L. Gilbertson, T. Tzfira & A. Loyter,
(2004) Protein interactions involved in nuclear
import of the Agrobacterium VirE2 protein in vivo and
in vitro. J Biol Chem 279: 29528-29533.
Crane, Y. M. & S. B. Gelvin, (2007) RNAi-mediated gene
silencing reveals involvement of Arabidopsis
chromatin-related genes in Agrobacterium-mediated
root transformation. Proc Natl Acad Sci U S A 104:
15156-15161.
Dafny-Yelin, M., A. Levy & T. Tzfira, (2008) The ongoing
saga of Agrobacterium-host interactions. Trends Plant
Sci 13: 102-105.
Dang, T. A. & P. J. Christie, (1997) The VirB4 ATPase of
Agrobacterium tumefaciens is a cytoplasmic membrane
protein exposed at the periplasmic surface. J
Bacteriol 179: 453-462.
Escobar, M. A. & A. M. Dandekar, (2003) Agrobacterium
tumefaciens as an agent of disease. Trends Plant Sci
8: 380-386.
Fabre, E. & F. Dunal (1853) Observations sur les maladies
regantes de la vigne. Bull. Soc. Cent. Agric. Dep.
Herault 40:46.
Fullner, K. J. & E. W. Nester, (1996) Temperature affects
the T-DNA transfer machinery of Agrobacterium
tumefaciens. J Bacteriol 178: 1498-1504.
Gelvin, S. B., (2000) Agrobacterium and plant genes
involved in T-DNA transfer and integration. Annu Rev
Plant Physiol Plant Mol Biol 51: 223-256.
Gelvin, S. B., (2003) Agrobacterium-mediated plant
transformation: the biology behind the "gene-
jockeying" tool. Microbiol Mol Biol Rev 67: 16-37.
Gelvin, S. B., (2006) Agrobacterium virulence gene
induction. Methods Mol Biol 343: 77-84.
Goodner, B., G. Hinkle, S.Gattung, N. Miller, M.
Blanchard, B.Qurollo, B. S. Goldman, Y. Cao, M.
Askenazi, C. Halling, L. Mullin, K. Houmiel, J. Gordon, M. Vaudin, O. Iartchouk, A. Epp, F. Liu, C.
Wollam, M.Allinger, D. Doughty, C. Scott, C. Lappas,
B. Markelz, C. Flanagan, C. Crowell, J. Gurson,
C.Lomo, C. Sear, G. Strub, C. Cielo, & S. Slater,
(2001) Genome sequence of the plant pathogen and
biotechnology agent Agrobacterium tumefaciens C58.
Science 294: 2323-2328.
Guyon, P., M. D. Chilton, P. Annik, & T. Jacques, (1980)
Agropine in "null-type" crown gall tumors: Evidence
for generality of the opine concept. Proc Natl
Acad Sci U S A 77: 2693-2697.
Hamilton, R. H. & M. Z. Fall, (1971) The loss of tumor- initiating ability in Agrobacterium tumefaciens by
incubation at high temperature. Experientia 27:
229-230.
Hapfelmeier, S., N. Domke, P. C. Zambryski & C. Baron,
(2000) VirB6 is required for stabilization of VirB5
and VirB3 and formation of VirB7 homodimers in
Agrobacterium tumefaciens. J Bacteriol 182: 4505-
4511.
Hooykaas, P. J., M. Hofker, H. den Dulk-Ras & R. A.
Schilperoort, (1984) A comparison of virulence
determinants in an octopine Ti plasmid, a nopaline Ti
plasmid, and an Ri plasmid by complementation
analysis of Agrobacterium tumefaciens mutants.
Plasmid 11: 195-205.
Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The
VirD2 protein of Agrobacterium tumefaciens contains a
C-terminal bipartite nuclear localization
signal: implications for nuclear uptake of DNA in
plant cells.Cell 68: 109–118.
Hwang, H. H. & S. B. Gelvin, (2004) Plant proteins that
interact with VirB2, the Agrobacterium tumefaciens
pilin protein, mediate plant transformation. Plant
Cell 16: 3148-3167.
Jakubowski, S. J., E. Cascales, V. Krishnamoorthy & P. J.
Christie, (2005) Agrobacterium tumefaciens VirB9, an
outer-membrane-associated component of
a type IV secretion system, regulates substrate
selection and T-pilus biogenesis.J Bacteriol 187:
3486-3495.
Jayaswal R.K., K.Veluthambi, S.B.Gelvin & J.L.Slightom,
(1987) Doublestranded cleavage of T-DNA and
generation of single-stranded T-DNA molecules in
Escherichia coli by a virD-encoded border-specific
endonuclease from Agrobacterium tumefaciens. J
Bacteriol 169: 5035–5045.
Jin, S., T. Roitsch, R. G. Ankenbauer, M. P. Gordon & E.
W. Nester, (1990a) The VirA protein of Agrobacterium
tumefaciens is autophosphorylated and is essential
for vir gene regulation. J Bacteriol 172: 525-530.
Jin, S. G., R. K. Prusti, T. Roitsch, R. G. Ankenbauer &
E. W. Nester, (1990b)Phosphorylation of the VirG
protein of Agrobacterium tumefaciens by the
autophosphorylated VirA protein: essential role in
biological activity of VirG. J Bacteriol 172: 4945-
4950.
Jin, S. G., T. Roitsch, P. J. Christie & E. W. Nester,
(1990c) The regulatory VirG protein specifically
binds to a cis-acting regulatory sequence involved in
transcriptional activation of Agrobacterium
tumefaciens virulence genes. J Bacteriol 172: 531-537.
John, M. C. & R. M. Amasino, (1988) Expression of an
Agrobacterium Ti plasmid gene involved in cytokinin
biosynthesis is regulated by virulence loci and
induced by plant phenolic compounds. J Bacteriol 170:
790-795.
Jones, A. L., K. Shirasu & C. I. Kado, (1994) The product
of the virB4 gene of Agrobacterium tumefaciens
promotes accumulation of VirB3 protein. J
Bacteriol 176: 5255-5261.
Judd, P. K., R. B. Kumar & A. Das, (2005) The type IV
secretion apparatus protein VirB6 of Agrobacterium
tumefaciens localizes to a cell pole. Mol Microbiol
55:115-124.
Kado, C. I. & M. G. Heskett, (1970) Selective media for
isolation of Agrobacterium,Corynebacterium, Erwinia,
Pseudomonas, and Xanthomonas. Phytopathology
60: 969-976.
Kao, J. C., K. L. Perry & C. I. Kado, (1982) Indoleacetic
acid complementation and its
relation to host range specifying genes on the Ti
plasmid of Agrobacterium tumefaciens. Mol Gen Genet
188: 425-432.
Karunakaran, R., T. H. Mauchline, A. H. Hosie & P. S.
Poole, (2005) A family of promoter probe vectors
incorporating autofluorescent and chromogenic
reporter proteins for studying gene expression in
Gram-negative bacteria. Microbiology 151: 3249-3256.
Keane, P. J., A. Kerr, & P. B. New, (1970) Crown gall of
stone fruit: Identification and nomenclature of
Agrobacterium isolates. Aust J Biol Sci 23:585-590.
Kerr, A., P. Manigault & J. Tempe, (1977) Transfer of
virulence in vivo and in vitro in Agrobacterium.
Nature 265: 560-561.
Klee, H., A. Montoya, F. Horodyski, C. Lichtenstein, D.
Garfinkel, S. Fuller, C. Flores,J. Peschon, E. Nester
& M. Gordon, (1984) Nucleotide sequence of the tms
genes of the pTiA6NC octopine Ti plasmid: two gene
products involved in plant tumorigenesis. Proc Natl
Acad Sci U S A 81: 1728-1732.
Klee, H. J., M. P. Gordon & E. W. Nester, (1982)
Complementation analysis of Agrobacterium tumefaciens
Ti plasmid mutations affecting oncogenicity. J
Bacteriol 150: 327-331.
Klee, H. J., F. F. White, V. N. Iyer, M. P. Gordon & E. W.
Nester, (1983) Mutational analysis of the virulence
region of an Agrobacterium tumefaciens Ti plasmid. J
Bacteriol 153: 878-883.
Krall, L., U. Wiedemann, G. Unsin, S. Weiss, N. Domke & C.
Baron, (2002) Detergent extraction identifies
different VirB protein subassemblies of the type IV
secretion machinery in the membranes of Agrobacterium
tumefaciens. Proc Natl Acad Sci U S A 99: 11405-11410.
Kumar, R. B. & A. Das, (2001) Functional analysis of the
Agrobacterium tumefaciens T-DNA transport pore
protein VirB8. J Bacteriol 183: 3636-3641.
Labes, M., A. Puhler & R. Simon, (1990) A new family of
RSF1010-derived expression and lac-fusion broad-host-
range vectors for gram-negative bacteria. Gene 89:
37-46.
Lai, E. M. & C. I. Kado, (1998) Processed VirB2 is the
major subunit of the promiscuous pilus of
Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717.
Lai, E. M., H. W. Shih, S. R. Wen, M. W. Cheng, H. H.
Hwang & S. H. Chiu, (2006)Proteomic analysis of
Agrobacterium tumefaciens response to the vir gene
inducer acetosyringone. Proteomics 6: 4130-4136.
Li, L., Y. Jia, Q. Hou, T. C. Charles, E. W. Nester & S.
Q. Pan, (2002) A global pH sensor: Agrobacterium
sensor protein ChvG regulates acid-inducible genes on
its two chromosomes and Ti plasmid. Proc Natl Acad
Sci U S A 99:12369-12374.
Lichtenstein, C., H. Klee, A. Montoya, D. Garfinkel, S.
Fuller, C. Flores, E. Nester & M. Gordon, (1984)
Nucleotide sequence and transcript mapping of the tmr
gene of the pTiA6NC octopine Ti-plasmid: a bacterial
gene involved in plant tumorigenesis. J Mol Appl
Genet 2: 354-362.
Liu, C. N., X. Q. Li & S. B. Gelvin, (1992) Multiple
copies of virG enhance the transient transformation
of celery, carrot and rice tissues by Agrobacterium
tumefaciens. Plant Mol Biol 20: 1071-1087.
Llosa, M., J. Zupan, C. Baron & P. Zambryski, (2000) The N-
and C-terminal portions of the Agrobacterium VirB1
protein independently enhance tumorigenesis. J
Bacteriol 182: 3437-3445.
Matthysse, A. G., K. V. Holmes & R. H. Gurlitz, (1981)
Elaboration of cellulose fibrils by Agrobacterium
tumefaciens during attachment to carrot cells. J
Bacteriol 145:583-595.
Merritt, P. M., T. Danhorn & C. Fuqua, (2007) Motility and
chemotaxis in Agrobacterium tumefaciens surface
attachment and biofilm formation. J Bacteriol 189:
8005-8014.
Mysore, K. S., J. Nam & S. B. Gelvin, (2000) An
Arabidopsis histone H2A mutant is deficient in
Agrobacterium T-DNA integration. Proc Natl Acad Sci U
S A 97:948-953.
Okker, R. J., H. Spaink, J. Hille, T. A. van Brussel, B.
Lugtenberg & R. A. Schilperoort,(1984) Plant-
inducible virulence promoter of the Agrobacterium
tumefaciens Ti plasmid. Nature 312: 564-566.
Pazour, G. J. & A. Das, (1990) Characterization of the
VirG binding site of Agrobacterium tumefaciens.
Nucleic Acids Res 18: 6909-6913.
Quandt, J. & M. F. Hynes, (1993) Versatile suicide vectors
which allow direct selection for gene replacement in
Gram-negative bacteria. Gene 127: 15-21.
Rogowsky, P. M., T. J. Close, J. A. Chimera, J. J. Shaw &
C. I. Kado, (1987) Regulation of the vir genes of
Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol
169: 5101-5112.
Sagulenko, V., E. Sagulenko, S. Jakubowski, E. Spudich &
P. J. Christie, (2001) VirB7 lipoprotein is
exocellular and associates with the Agrobacterium
tumefaciens T pilus. J Bacteriol 183: 3642-3651
Sambrook, J. & D. W. Russell. (2001) Molecular cloning : a
laboratory manual, 3rd ed. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, N.Y.
Schägger, H. & von Jagow, G. (1987) Tricine–sodium
dodecyl sulfate polyacrylamide gel electrophoresis
for the separation of proteins in the range from 1–
100 kDalton. Ana Biochem 166:368–379.
Scheiffele, P., W. Pansegrau & E. Lanka, (1995) Initiation
of Agrobacterium tumefaciens T-DNA processing.
Purified proteins VirD1 and VirD2 catalyze site- and
strand-specific cleavage of superhelical T-border
DNA in vitro. J Biol Chem 270: 1269-1276.
Schmidt-Eisenlohr, H., N. Domke, C. Angerer, G. Wanner, P.
C. Zambryski & C.Baron, (1999) Vir proteins stabilize
VirB5 and mediate its association with the T
pilus of Agrobacterium tumefaciens. J Bacteriol 181:
7485-7492.
Schrammeijer, B., A. den Dulk-Ras, A. C. Vergunst, E.
Jurado Jacome & P. J.Hooykaas, (2003) Analysis of Vir
protein translocation from Agrobacterium
tumefaciens using Saccharomyces cerevisiae as a
model: evidence for transport
of a novel effector protein VirE3. Nucleic Acids Res
31: 860-868.
Shaw, C. H., (1991) Swimming against the tide: chemotaxis
in Agrobacterium.Bioessays 13: 25-29.
Shirasu, K. & C. I. Kado, (1993) Membrane location of the
Ti plasmid VirB proteins involved in the biosynthesis
of a pilin-like conjugative structure on
Agrobacterium tumefaciens. FEMS Microbiol Lett 111:
287-294
Shirasu, K., Z. Koukolikova-Nicola, B. Hohn & C. I. Kado,
(1994) An inner-membrane-associated virulence protein
essential for T-DNA transfer from Agrobacterium
tumefaciens to plants exhibits ATPase activity and
similarities to conjugative transfer genes. Mol
Microbiol 11: 581-588.
Simon, R., U.Priefer & A. Puhler, (1983) A broad host
range mobilization system for in vivo genetic
engineering: transposon mutagenesis in gram negative
bacteria. Biotechnology 1: 784-791.
Smith, E. F. & C. O. Townsend, (1907) A plant-tumor of
bacterial origin. Science 24:671-673.
Smith V.A.&J. Hindley (1978) Effect of agrocin 84 on
attachment of Agrobacterium tumefaciens to cultured
tobacco cells. Nature 276:498–500.
Spudich, G. M., D. Fernandez, X. R. Zhou & P. J. Christie,
(1996) Intermolecular disulfide bonds stabilize VirB7
homodimers and VirB7/VirB9 heterodimers during
biogenesis of the Agrobacterium tumefaciens T-complex
transport apparatus. Proc Natl Acad Sci U S A 93:
7512-7517.
Stachel, S. E., E. Messens, M. Vanmontagu& P. Zambryski,
(1985) Identification of signal molecules produced by
wounded plant cells that activate T-DNA transfer in
Agrobacterium tumefaciens. Nature 318:624-629.
Stachel, S. E. & E. W. Nester, (1986) The genetic and
transcriptional organization of the
vir region of the A6 Ti plasmid of Agrobacterium
tumefaciens. EMBO J 5:1445-1454.
Stachel, S. E., E. W. Nester & P. C. Zambryski, (1986) A
plant cell factor induces Agrobacterium tumefaciens
vir gene expression. Proc Natl Acad Sci U S A 83:
379-383.
Stachel, S. E. & P. C. Zambryski, (1986) virA and virG
control the plant-induced activation of the T-DNA
transfer process of Agrobacterium tumefaciens. Cell
46: 325-333.
Thomashow, M. F., J. E. Karlinsey, J. R. Marks & R. E.
Hurlbert, (1987) Identification of a new virulence
locus in Agrobacterium tumefaciens that affects
polysaccharide composition and plant cell attachment.
J Bacteriol 169:3209-3216.
Thorstenson, Y. R., G. A. Kuldau & P. C. Zambryski, (1993)
Subcellular localization of seven VirB proteins of
Agrobacterium tumefaciens: implications for the
formation of a T-DNA transport structure. J Bacteriol
175: 5233-5241.
Thorstenson, Y. R. & P. C. Zambryski, (1994) The essential
virulence protein VirB8 localizes to the inner
membrane of Agrobacterium tumefaciens. J Bacteriol
176:1711-1717.
Tombolini, R., A. Unge, M. E. Davey, F. J. deBruijn & J.
K. Jansson, (1997) Flow cytometric and microscopic
analysis of GFP-tagged Pseudomonas fluorescens
bacteria. FEMS Microbiol Ecol 22:17-28.
Turk, S. C. H. J., L. S. Melchers, H. den Dulk-Ras, A. J.
A. Regensburg-Tuink,& P. J. J. Hooykass, (1991)
Environmental conditions differentially affect vir
gene induction in different Agrobacterium strains.
Role of the VirA sensor protein. Plant Mol Biol 16:
1051–1059.
Tzfira T., M. Vaidya & V.Citovsky, (2001) VIP1, an
Arabidopsis protein that interacts with Agrobacterium
VirE2, is involved in VirE2 nuclear import and
Agrobacterium infectivity. EMBO J 20:3596-3607.
Tzfira, T. & V. Citovsky, (2002) Partners-in-infection:
host proteins involved in the transformation of plant
cells by Agrobacterium. Trends Cell Biol 12: 121-129.
Tzfira, T., M. Vaidya & V. Citovsky, (2004) Involvement of
targeted proteolysis in plant genetic transformation
by Agrobacterium. Nature 431: 87-92.
Tzfira, T., B. Lacroix & V. Citovsky, (2005). Nuclear
import of Agrobacterium T-DNA. in: Nuclear import and
export./T. Tzfira and V. Citovsky (eds.), Landes
Bioscience and Kluwer Academic. 83-99.
Tzfira, T. & V. Citovsky, (2006) Agrobacterium-mediated
genetic transformation of plants: biology and
biotechnology. Curr Opin Biotechnol 17: 147-154.
Vergunst, A. C., B. Schrammeijer, A. den Dulk-Ras, C. M.
de Vlaam, T. J.Regensburg-Tuink & P. J. Hooykaas,
(2000) VirB/D4-dependent protein translocation from
Agrobacterium into plant cells. Science 290: 979-982.
Vergunst, A. C., M. C. van Lier, A. den Dulk-Ras & P. J.
Hooykaas, (2003)Recognition of the Agrobacterium
tumefaciens VirE2 translocation signal by the
VirB/D4 transport system does not require VirE1.
Plant Physiol 133: 978-988.
Wang K., S.E.Stachel, B.Timmerman, M.Van Montagu & P.C.
Zambryski (1987) Site-specific nick in the T-DNA
border sequence as a result of Agrobacterium vir gene
expression. Science 235: 587–591.
Ward E.R. & Barnes W.M.(1988) VirD2 protein of
Agrobacterium tumefaciens very tightly linked to the
5'' end of T-strand DNA. Science 242:927–930.
Ward, J. E., Jr., E. M. Dale, E. W. Nester & A. N. Binns,
(1990) Identification of a VirB10 protein aggregate
in the inner membrane of Agrobacterium tumefaciens.
J Bacteriol 172: 5200-5210.
Ward, D. V., J. R. Zupan & P. C. Zambryski, (2002)
Agrobacterium VirE2 gets the VIP1 treatment in plant
nuclear import. Trends Plant Sci 7: 1-3.
White, C. E. & S. C. Winans, (2007) Cell-cell
communication in the plant pathogen Agrobacterium
tumefaciens. Philos Trans R Soc Lond B Biol Sci 362:
1135-1148.
Winans, S. C., (1990) Transcriptional induction of an
Agrobacterium regulatory gene at tandem promoters by
plant-released phenolic compounds, phosphate
starvation,and acidic growth media. J Bacteriol 172:
2433-2438.
Winans, S. C., (1992) Two-way chemical signaling in
Agrobacterium-plant interactions.Microbiol Rev 56: 12-
31.
Wood, D. W., J. C. Setubal, R. Kaul, D. E. Monks, J. P.
Kitajima, V. K. Okura,Y. Zhou, L. Chen, G. E. Wood,
N. F. Almeida, Jr., L. Woo, Y. Chen, I. T.
Paulsen, J. A. Eisen, P. D. Karp, D. Bovee, Sr., P.
Chapman, J. Clendenning, G.Deatherage, W. Gillet, C.
Grant, T. Kutyavin, R. Levy, M. J. Li, E. McClelland,
A. Palmieri, C. Raymond, G. Rouse, C. Saenphimmachak,
Z. Wu, P. Romero,D. Gordon, S. Zhang, H. Yoo, Y. Tao,
P. Biddle, M. Jung, W. Krespan, M.Perry, B. Gordon-
Kamm, L. Liao, S. Kim, C. Hendrick, Z. Y. Zhao, M.
Dolan,F. Chumley, S. V. Tingey, J. F. Tomb, M. P.
Gordon, M. V. Olson & E. W.Nester, (2001) The genome
of the natural genetic engineer Agrobacterium
tumefaciens C58. Science 294: 2317-2323.
Wu, H. Y., P. C. Chung, H. W. Shih, S. R. Wen & E. M. Lai,
(2008) Secretome analysis uncovers an Hcp-family
protein secreted via a type VI secretion system in
Agrobacterium tumefaciens. J Bacteriol 190: 2841-2850.
Yadav, N. S., J. Vanderleyden, D. R. Bennett, W. M. Barnes
& M. D. Chilton, (1982)
Short direct repeats flank the T-DNA on a nopaline Ti
plasmid. Proc Natl Acad Sci U S A 79: 6322-6326.
Yuan, Q., A. Carle, C. Gao, D. Sivanesan, K. A. Aly, C.
Hoppner, L. Krall, N. Domke & C. Baron, (2005)
Identification of the VirB4-VirB8-VirB5-VirB2 pilus
assembly sequence of type IV secretion systems. J
Biol Chem 280: 26349-26359.
Yuan, Z. C., P. Liu, P. Saenkham, K. Kerr & E. W. Nester,
(2008) Transcriptome profiling and functional
analysis of Agrobacterium tumefaciens reveals a
general conserved response to acidic conditions (pH
5.5) and a complex acid-mediated signaling involved
in Agrobacterium-plant interactions. J Bacteriol 190:
494-507.
Zaenen, I., N. Van Larebeke, M. Van Montagu & J. Schell,
(1974) Supercoiled circular DNA in crown-gall
inducing Agrobacterium strains. J Mol Biol 86: 109-
127.
Zambryski, P., H. Joos, C. Genetello, J. Leemans, M. Van
Montagu & J. Schell (1983) Ti plasmid vector for the
introduction of DNA into plant cells without
alteration of their normal regeneration capacity.
EMBO J 2:2143–2150.
Zhu, J., P. M. Oger, B. Schrammeijer, P. J. Hooykaas, S.
K. Farrand & S. C. Winans,(2000) The bases of crown
gall tumorigenesis. J Bacteriol 182: 3885-3895.
Zhu, Y., J. Nam, J. M. Humara, K. S. Mysore, L. Y. Lee, H.
Cao, L. Valentine, J. Li, A. D. Kaiser, A. L.
Kopecky, H. H. Hwang, S. Bhattacharjee, P. K. Rao, T.
Tzfira, J.Rajagopal, H. Yi, Veena, B. S. Yadav, Y. M.
Crane, K. Lin, Y. Larcher, M. J. Gelvin, M. Knue, C.
Ramos, X. Zhao, S. J. Davis, S. I. Kim, C. T.
Ranjith-Kumar, Y. J. Choi, V. K. Hallan, S.
Chattopadhyay, X. Sui, A.Ziemienowicz, A. G.
Matthysse, V. Citovsky, B. Hohn & S. B. Gelvin,
(2003)Identification of Arabidopsis rat mutants.
Plant Physiol 132: 494-505.
Zupan, J., C. A. Hackworth, J. Aguilar, D. Ward & P.
Zambryski, (2007) VirB1* promotes T-pilus formation
in the vir-Type IV secretion system of
Agrobacterium tumefaciens. J Bacteriol 189: 6551-6563.
Zupan, J., T. R. Muth, O. Draper & P. Zambryski, (2000)
The transfer of DNA from Agrobacterium tumefaciens
into plants: a feast of fundamental insights. Plant J
23: 11-28.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊