古德業、黃伯恩。(1994)。生物肥料在永續農業上應用及展望。微生物肥料之開發與利用研討會專刊。台灣省農業試驗所特刊,44:1-4,嘉義,台灣。
林良平。(1987)。土壤微生物學。南山堂出版社,台北市,台灣。
林財旺。1998。優良禽畜糞堆肥製作。台灣省畜產試驗所四十週年所慶畜牧經營及廢棄物處理研討會論文專輯,台灣省畜產試驗所編印,台南,台灣,pp. 23-32。
吳正宗。(2005)。認識化學肥料。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 24-62,台南,台灣,。
翁震炘。(1993)。台灣地區豬糞尿處理與利用,29:64-74台灣農業。
翁震炘。(1998)。禽畜糞堆肥處理技術與獸醫公共衛生之探討。國立中興大學獸醫學研究所碩士論文,台中,台灣。陳仁炫。(2005)。有機質肥料品質及施肥。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 75-93,台南,台灣。
陳育信。(1998)。禽畜糞堆肥處理技術輔導手冊。台灣省畜牧廢棄資源再生利用協會,南投,台灣。
陳國樹。(1998)。高溫菌在生物肥料製作上應用與其抗菌活性之探討。國立台灣大學農業化學研究所博士論文,台北,臺灣。張政雄、楊盛行。(2001)。培養基對高溫溶磷菌活性之影響。第四屆畜牧資源回收再利用研討會論文集,台灣省畜牧獸醫學會,台中,台灣,pp. 73-83。
張政雄、陳顗竹、楊盛行。(2002)。基質種類、堆積時間及深度對溶磷菌相之影響。第五屆畜牧資源回收再利用研討會論文集,台灣省畜牧獸醫學會,台中,台灣,pp. 13-33。
張鳳屏、楊秋忠。(1991)。磷肥及溶磷細菌對茶樹磷素吸收與茶葉品質的研究。土壤與環境,2:35-44。楊秋忠。(2005)。生物肥料簡介。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 94-99,台南,台灣。
楊秋忠、張芝賢、陳立夫、趙震慶。(1998)。台灣土生固氮溶磷細菌特性之研究。中國農業化學會誌,36:201-210。楊盛行。(1994)。堆肥過程中微生物相變化及高溫放線菌之分離及應用。土壤肥料試驗報告。台灣省畜產試驗所編印,台南,台灣,pp. 338-357。
楊盛行。(1999)。溫室氣體通量測定及減量對策。國立台灣大學農業化學系及全球變遷中心,台北,臺灣,pp. 220。
楊盛行。(2000)。溫室氣體通量測定及減量對策(Ⅱ)。國立台灣大學農業化學系、全球變遷中心及農業陳列館,台北,臺灣,pp. 233。
楊盛行、張淑貞、魏嘉碧。(2000)。農家禽畜廢棄物堆肥化之性質。中華生質能源學會會誌,19 : 49-61。楊盛行。(2001)。溫室氣體通量測定及減量對策(Ⅲ)。國立台灣大學全球變遷中心、農業化學系及農業陳列館,台北,臺灣,pp. 239。
楊盛行、楊秀婷、陳薇如、魏嘉碧。(2001)。台灣北部農家禽畜廢棄物堆肥化調查分析研究。中華民國環境保護學會會誌,24:8-25。劉瑞美、楊秋忠。(2002)。接種溶磷根瘤菌對作物生長與養份吸收之影響。土壤與環境,5:153-164。Abou-Shanab. R A., Ghozlan. H., Ghanem. K. and Moawad. H. (2005). Behavior of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World Journal of Microbiology and Biotechnology, 21 (6-7):1095-1101.
Ahn, J. H., Grun, I. U. and Mustapha, A. (2004). Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. Journal of Food Protection, 67 (1): 148-155.
Alagawadi, A. R. and Gaur, A. C. (1988). Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant and Soil, 105: 241-246.
Albiach, R., Cannet, R., Pomares, F. and Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the organic amendments to a horticultural soil. Bioresource Technology, 75: 43-48.
Abosi, A. O. and Raseroka, B. H. (2003). In vivo antimalarial activity of
Vernonia amygdalina. British Journal of Biomedical Science, 60 (2): 89-91.
Alexander, M. (1977). Introduction to Soil Microbiology, 2nd ed. John Wiley and Sons, New York, pp. 333-339.
Alikhani, H. A., Saleh-Rastin, N. and Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, 287: 35-41.
Amusan, O. O. G. (1996). Antimalarial active principles of Spathodea campanulata
stem bark. Phytotherapy Research, 10 (8): 692-693.
Anandham, R., Choi, K. H., Gandhi, P. I., Yim, W. J., Park, S. J., Kim, K. A., Madhaiyan, M. and Sa, T. M. (2007). Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formation. World Journal of Microbiology and Biotechnology, 23: 1121-1129.
Anastassiadis S., Wandrey C. and Rehm, H. J. (2005). Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio. World Journal of Microbiology and Biotechnology, 21 (5): 695-705.
Anderson, G. (1980). Assessing organic phosphorus in soil. In: Khasawnel, F. E., Sample, E. C. and Kamprath, E. J. (Eds), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin, pp. 411-432.
Aquilanti, L., Favilli, F. and Clementi, F. (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry, 36: 1475-1483.
Arora, D. and Gaur, C. (1979). Microbial solubilization of different inorganic phosphate. Indian Journal of Experimental Biology, 17: 1258-1261.
Arun, A. B. and Sridhar, K. R. (2005). Growth tolerance of Rhizobia isolated from sand dune legumes of the southwest coast of India. Engineering in Life Sciences, 5 (2): 134-138.
Asea, P. E. A., Kucey, R. M. N. and Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biocehmisrty, 20: 459-464.
Babu-Khan, S., Yeo, T. C., Martin, W. L., Duron, M. R., Rogers, R. D. and Goldstein, A, H. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonnas cepacia. Applied and Environmental Microbiology, 61(3): 927-978.
Bajpia, P. D. and Sundare, R. (1971a). Phosphate solubilizing bacteria. Part Ⅰ. Solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3): 972-978.
Bajpai, P. D. and Sundare, R. (1971b). Phosphate solubilizing bacteria. Part. III. Soil inoculated with phosphate solubilizing bacteria. Soil Science and Plant Nutrition, 17: 46-53.
Bandyopadhyay, U., Biswas, K., Sengupta, A., Moitra, P., Dutta, P., Sarkar, D., Debnath, P., Ganguly, C. K. and Banerjee, R. K. (2004). Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Science, 75 (24): 2867-2878.
Banik, S. and Dey, B. K. (1981). Phosphate-solubilizing microorganisms of a lateritic soil. I. Solubilization of inorganic phosphates and production of organic acids by microorganisms, isolated in sucrose calcium phosphate agar plates. Zentrlbl Bakteriologie, 136: 478-486.
Banik, S. and Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubibizing microorganisms. Plant and Soil, 69: 353-364.
Banfield, J., Barker, W., Welch, S. and Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Science (USA), 96: 3404-3411.
Barnett, G. M. (1994a). Phosphorous forms in animal manure. Bioresource Technology, 19: 139-148.
Barnett, G. M. (1994b). Manure P fractionation. Bioresource Technology, 19: 149-155.
Barroso, C. B. and Nahas, E. (2005). The status of soil phosphate fractions and the ability of fungi to dissolve hardly insoluble phosphates. Applied Soil Ecology, 29: 73-83.
Baya, A. M., Boethling, R. S. and Ramos-cormenzana, A. (1981). Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biology and Biochemistry, 13: 527-531.
Berger, I., Barrientos, A. C., Caceres, A., Hernandez, M., Rastrelli, L., Passreiter, C. M. and Kubelka, W. (1998). Plants used in Guatemala for the treatment of protozoal infections-II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi. Journal of Ethnopharmacology, 62 (2): 107-115.
Biegert, C., Wagner, L., Ludtke, R., Kotter, L., Lohmuller, C., Gunaydin, I., Taxis, K. and Heide, L. (2004). Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. Journal of Rheumatology, 31 (11): 2121-2130.
Biswas, D. R. and Narayanasamy. G. (2006). Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresource Technology, 97: 2243-2251.
Beever, R. E. and Burns, D. J. W. (1980). Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research, 8: 127-219.
Blazso, G., Gabor, M., Schonlau, F. and Rohdewald, P. (2004). Pycnogenol (R) accelerates wound healing and reduces scar formation. Phytotherapy Research, 18 (7): 579-581.
Bolan, N. S., Naidu, R., Mahimairaja., S. and Baskaran. S. (1994). Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils, 18: 311-319.
Brady, N. C. and Weil, R. R. (2002). The Nature and Properties of Soils, 13th ed. Macmillan, New York.
Brams, W. H. and McLaren. A. D. (1974). Phosphatase reactions in a column of soil. Soil Biology and Biochemistry, 6: 183-189.
Chang, C. H., Hsieh C. Y. and Yang, S. S. (2001). Effect of culture media on the phosphate-solubilizing activity of thermo-tolerant Microbes. Journal of the Biomass Energy Society of China, 20: 79-90.
Chang, C. H. and Yang, S. S. (2006). Addition of polyelectrolyte oxygen detoxifier in poultry and livestock wastes compost accelerating its maturity and maintaining population of thermo-tolerant microbes during composting. Proceedings of 6th Cross Srait Conference on Soil Science and Fertilizer, 2: 677-692.
Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. and Young C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34: 33-41.
Chen, Z., Shengwu, M. and Liu, L. (2008). Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresource Technology, 99: 6702-6707.
Chhonkar, P. K. and Subba Rao, N. S. (1967). Phosphate solubilization by fungi associated with legume root nodules. Canadian Journal of Microbiology, 13: 749-753.
Chikae, M., Ikeda, R., Kerman, K., Morita, Y. and Tamiya, E. (2006). Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis. Bioresource Technology, 97: 1979-1985.
Chin, H. S., Huang, C. C., Chen, K. S. and Yang, S. S. (1999). Cellulase activity of thermophilic actinomycetes and their effect on the quality of rice straw compost. Journal of the Agricultural Association of China New Series, 185: 58-71.
Chiu, R. Y. (1995). Parameters of compost maturity with degree of humification and geosmin production. Doctor Thesis, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, pp. 157.
Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H. and Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37:1970-1974.
Coello, P. (2002). Purification and characterization of secreted acid phosphatase in phosphorus-deficient Arabidopsis thaliana. Physiologia Plantarum, 116: 293-298.
Connel, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199: 301-305.
Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. and Korber, G. J. (1994). Biofilms, the customized microniche. Journal of Bacteriology, 176: 2137-2142.
Council of Agriculture, 2007. Annual Report of Taiwan Agriculture-2006. Council of Agriculture, Executive Yuan, Taipei, Taiwan.
Cunningham, J. E. and Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and Environmental Microbiology, 58: 1451-1458.
Dalal, R. C. (1977). Soil organic phosphorus. Advance Agronomy, 29:83-117.
Dalal, R. C. (1982). Effect of plant growth and addition of plant residues on the phosphatase activity in soil. Plant and Soil, 66: 265-269.
Datta, M., Banik, S. and Gupta. R. K. (1982). Studies on the efficacy of a phytohormomne producing phosphate solubilizing Bacillus ftrmus in augmenting paddy yield in acid of Nagaland. Plant and Soil, 69: 356-373.
De Cesare, F., Garzillo, A. M. V., Buonocore, V. and Badalucco, L. (2000). Use of sonication for measuring acid phosphatase activity in soil. Soil Biology and Biochemistry, 32: 825-832.
Del Campillo, M. C., Van der Zee, S. E. A. T. M. and Torrent, J. (1999). Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science, 50: 391-399.
DeLong, E. (1992). Archeae in coastal marine envinroments. Proceedings of the National Academy of Sciences of the United States of America, 89: 5685-5689.
Delvasto, P., Valverde, A., Ballester, A., Igual, J. M., Muñoz, J. A., González, F., Blázquez M. L. and García. C. (2006). Characterization of brushit as re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biology and Biochemistry, 38: 2645-2654.
Di Simine, C. D., Sayer, J. A. and Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28: 87-94.
Donzelli. B. G. G., Siebert. K. J. and Harman, G. E. (2005). Response surface modeling of factors influencing the production of chitinolytic and β-1,3-glucanolytic enzymes in Trichoderma atroviride strain P1. Enzyme and Microbial Technology, 37:82-92.
Duff, R. B., Webley, D. M. and Scott, R. O. (1963). Solubilization of minerals and related materials by 2-ketoglucomc acid producing bacteria. Soil Science, 95: 105-114.
Dissing, N. L. (1980). Investigation of the relationship between P-fertility, phosphatase activity and ATP content in soil. Plant and Soil, 7: 95-103.
Ekinci, K., Keener, H. M., Elwell, D. L. and Michel, F. C. (2004). Effects of aeration
strategies on the composting process: Part I. Experimental studies. Transactions of the Asae, 47 (5): 1697-1708.
Elorrieta, M. A., López, M. J., Suárez-Estrella, F., Vargas-García, M. C. and Moreno, J. (2002). Composting of different horticultural wastes: effect of fungal inoculation. In: Inserm, H., Riddech, N. and Klammer, S. (Eds.), Microbiology of Composting. Springer, Heidelberg. pp. 119-132.
El-Tarabily, K. A., Nassar, A. H. and Sivasithamparam, K. (2008). Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Applied Soil Ecology, 39: 161-171.
Espindola, L. S., Vasconcelos, J. R. E., de Mesquita, M. L., Marquie, P., de Paula, J. E., Mambu, L. and Santana, J. M. (2004). Trypanocidal activity of a new diterpene from Casearia sylvestris var. lingua. Plantamedica, 70 (11): 1093-1095.
Fageria, N. K. and Baligar, V. C. (2001). Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Communications in Soil Science and Plant Analysis, 32: 1303-1319.
Fasim, F., Ahmed, N., Parsons, R. and Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213:1-6.
Fomina, M., Hillier, S., Charnok, J., Melville, K., Alexander, I. and Gadd, G. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Applied and Environmental Microbiology, 71: 371-381.
Fox, T. R., Comerford, N. B. and McFee. W. W. (1990). Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal, 4: 1763-1767.
Franzluebbers, A. J., Stuedemann, J. A. and Wilkinson, S. R. (2002). Bermudagrass management in the southern piedmont USA. II. soil phosphorus. Soil Science Society of America Journal, 66: 291-298.
Frimmel, F. H. and Christman, R. F. (1988). Humic Substances and Their Role in the Environment. John Wiley and Sons, A Wiley-Interscience Publication, New York. pp. 271.
Fu, C. M. and Chen, S. Y. (1990). Characteristics and utilization of excess sludge compost on the pig farm. Journal of the Biomass Energy Society of China, 9: 137-143.
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41: 47-92.
Gaind, S. and Gaur, A. C. (2002). Impact of fly ash and phosphate solubilizing bacteria on soybean productivity. Bioresource Technology, 85: 313-315.
Gaind, S., Pandey A. G. and Lata. (2006). Microbial biomass, P-nutrition, and emzymatic activities of wheat soil in response to phosphorus enriched organic and inorganic manures. Journal of Environmental Science and Health Part B, 41:177-187.
Galar, M. L. and Boiardi, J. L. (1995). Evidence for a membrane-bound pyrroloquinoline quinone–linked glucose dehydrogenase in Acetobacter diazotrophicus. Applied Microbiology and Biotechnology, 43: 713-716.
Gellatly, K. S., Moorehead, G. B. G., Duff, S. M. G., Lefebvre, D. D. and Plaxton, W. C. (1994). Purification and characterization of potato tuber acid phosphatase having significant phosphotyrosine activtiy. Physiologia Plantarum, 106: 223-232.
Gerretsen, F. C. (1948). The influence of microorganisms on the phosphate intake by the plant. Plant and Soil, 1: 51-81.
Gibson, B. R. and Mitchell, D. T. (2004). Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi. Mycological Research, 108(8): 947-954.
Goldstein, A. H. (1986). Bacterial solubilization of mineral phosphate: historical perspective and future prospects. American Journal of Alternative Agriculture, 1: 57-57.
Goldstein, A. H. and Liu, S. T. (1987). Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechology, 5: 72-74.
Goldstein, A. H. (1991). Plant cells selected for resistance to phosphate starvation show enhanced P use efficiency. Theoretical and Applied Genetics, 82(2): 191-194.
Goldstein, A. H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture and Horticulture, 12: 185-193.
Goldstein, A. H., Baertlein, D. A. and McDaniel, R. G. (1988). Phosphate starvation inducible metabolism in Lycopersicon esculentum: I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiology, 87, 711-715.
Goldstein, A. H., Braverman, K. and Osorio, N. (1999). Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology, 30(4): 295-300.
Goodfellow, M., Lacey, J. and Todd, C. (1987). Numerical classification of thermophilic Streptomycetes. Journal of General Microbiology, 133: 3135-3149.
Goosen, N., Horsman, H. P., Huinen, R. G. and van de Putte, P. (1989). Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrroloquinoline quinone: nucleotide sequence and expression in Escherichia coli K-12. Journal of Bacteriology, 171: 447-455.
Gray, K. R., Sherman, K. and Biddlestone, A. J. (1971). A review of composting. Part 1. Process Biochemistry, 6: 32-36.
Grimm, T., Schafer, A. and Hogger, P. (2004). Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radical Biology and Medicine, 36 (6): 811-822.
Gupta, R., Singal, R., Shankar, A., Kuhad, R. C. and Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. Journal of General and Applied Microbiology, 40: 255-260.
Hamdali, H., Bouizgarne, B., Hafidi, M., Lebrihi, A., Virolle, M. J. and Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 38: 12-19.
Halder, A. K., Mishra, A. K., Bhattacharyya, P. and Chakrabartty, P. K. (1990). Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. Journal of General and Applied Microbiology, 36: 81-92.
Harada, N. H., Takagi, K., Harazono, A., Fujii, K. and Iwasaki, A. (2006). Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biology and Biochemistry, 38: 173-179.
Harada, Y., Haga, K., Osada, T. and Koshino, M. (1991). Quality aspects of animal waste compost. In: Proceedings of the Symposium on Pig Waste Treatment and Composting II. Taiwan Livestock Research Institute, Tainan, Taiwan. pp. 54-76.
Harley, J. L. and Smith, S. E. (1983). Mycorrhizal Symbiosis. Academic Press, New York.
Harley, A. K. and Chakrabartty, P. K. (1993). Solubilization of inorganic phosphate by Rhizobium. Folia Microbiology, 38: 325-330.
Hayes, M. H. B., MacCarthy, P., Malcolm, R. L. and Swift, R. S. (1989). Humic Substances II, in Search of Structure. John Wiley and Sons, A Wiley-Interscience Publication, New York. pp. 764.
Hilda, R. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
Hilda, R., Gonzalez, T. and Selman, G. (2000). Expression of a mineral phosphate solubilizing gene from Erwina herbicola in two rhizobacterial strains. Journal of Biotechnology, 84: 155-161.
Huang, C. M., Chen, W. C., Sheen, H. K., Chang S. J., Lee, S. W. and Wang, L. H. (1994). Mass production of bagasse compost in an economic way. In: Proceedings of Symposium on Technology and Utilization of Composting. II. The Biomass Energy Society of China, Taipei, Taiwan. pp. 122-130.
Huang, S. N. (1991). Application of hog compost in crop production. In: Proceedings of the Seminar on Hog Waste Treatment, Compost Preparation, Utilization and Management. The Biomass Energy Society of China, Taipei, Taiwan. pp. 1-17.
Hegde, U., Chang, T. C. and Yang, S. S. (2003). Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere, 52: 1275-1285.
Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Suh, J. S. and Kim, K. Y. (2003). 2-Ketogluconic acid production and phosphate solubilization by Enterobater intermedium. Current Microbiology, 47: 87-92.
Isbelia, R., Bernier, R., Simard, R., Tanguay, P. and Antoun, H. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbial Ecology, 28: 291-295.
Illmer, P. and Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24: 389-395.
Illmer, P. and Schinner, F. (1995). Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry, 27: 257-263.
Illmer, P., Barbato, A. and Schinner, F. (1995). Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry, 27: 265-270.
Jiang, C. Y., Sheng, X. F., Qian, M. and Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72: 157-164.
Johri, J. K., Surange, S. and Nautiyal, C. S. (1999). Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39: 89-93.
Jones, D. L. and Darrah, P. R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 166: 247-257.
Juang, T. C. (1987). Lecture of Soil Chemistry. Publication Division Office of National Chung-Hsing University Academic Affairs, Taichung. Taiwan, pp. 79-107.
Jurinak, J. J., Dudley, L. M., Allen, M. F. and Knight, W. G. (1986). The role of calcium oxalates in the availability in soils of semiarid regions a thermodynamic study. Soil Science, 142: 255-261.
Kam, T. S., Pang, H. S., Choo, Y. M. and K. Komiyama, K. (2004). Biologically active ibogan and vallesamine derivatives from Tabernaemontana divaricata. Chemistry and Biodiversity, 1 (4): 646-656.
Karonen, M., Loponen, J., Ossipov, V. and Pihlaja, K. (2004). Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Analytica Chimicaacta, 522 (1): 105-112.
Katznelson, H. and Bose, B. (1959). Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots and non- rhizosphere soil. Canadian Journal of Microbiology, 5: 79-85.
Khairnar, N. P., Misra, H. S. and Apte, S. K. (2003). Pyrroloquinoline-quinone synthesized in Escherichia coli by Pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochemical and Biophysical Research Communications, 312: 303-308.
Kim, K. Y., McDonald, G. A. and Jordan, D. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 24: 347-352.
Kim, K. Y., Jordan, D. and Mcdonald, G. A. (1998a). Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, 30: 995-1003.
Kim, K. Y., Jordan D. and Krishnan, H. B. (1998b). Expression of gene from
Rahanella aquatilis that are necessary for mineral phosphate solubilization in
Escherichia coli. FEMS Microbiology Letters, 159: 121-127.
Kim, C. H., Han, S. H., Kim, K. Y., Cho, B. H., Kim, Y. H., Koo, B. S. and Kim, Y. C. (2003). Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Current Microbiology, 47: 457-461.
Kim, Y. J., Chung, J. E., Kurisawa, M., Uyama, H. and Kobayashi, S. (2004). Superoxide anion scavenging and xanthine oxidase inhibition of (+)-catechin-aldehyde polycondensates. Amplification of the antioxidant property of (+)-catechin by polycondensation with aldehydes. Biomacromolecules, 5 (2): 547-552.
Kittur, F. S., Kumar, A. B. V., Varadaraj, M. C. and Tharanathan, R. N. (2005). Chitooligosaccharides-preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydrate Research, 340:1239-1245.
Kohama, T., Suzuki, N., Ohno, S. and Inoue, M. (2004). Analgesic efficacy of French maritime pine bark extract in dysmenorrhea-An open clinical trial. Journal of Reproductive Medicine, 49 (10): 828-832.
Kpomblekou, A. K. and Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rock. Soil Science, 158: 442-453.
Krieg, N. R. and Döbereiner, J. (1984). Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore/London, 2: 1104-1138.
Krishnary, P. U. and Goldstein, A. H. (2001). Cloning of a Serratia marcescens DNA
fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase. FEMS Microbiolgy Letters, 205: 215-220.
Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soil. Canadian Journal of Soil Sciences, 63: 671-678.
Kucey, R. M. N. (1987). Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 35: 661-667.
Kucey, R. M. N. (1988). Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Canadian Journal of Soil Sciences, 68: 61-270.
Kucey, R. M. N., Janzen, H. H. and Leggett, M. B. (1989). Microbial mediated increase in plant-availability phosphorus. Advances in Agronomy, 42: 199-228.
Kundu, B. S. and Gaur, A. C. (1980). Establishment of nitrogen-fixing and phosphate-solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and Soil, 57: 223-230.
Kupper, K. C., Bettiol, W., de Goes, A., Souza, P. S. and Bellotte, J. A. M. (2006). Biofertilizer for control of Guignardia citricarpa, the causal agent of citrus black spot. Crop Protection, 25: 569-573.
Kusudo, T., Sasaki, T. and Inouye, K. (2003). Purification and characterization of purple acid phosphates PAPI from dry power of sweet potato. Bioscience, Biotechnology and Biochemistry, 67: 1609-1611.
Ladd, J. N., Amato, M. and Van veen, H. A. (2004). Soil microbial biomass, its assay and role in turnover of organic matter C and N. Soil Biology and Biochemistry, 36: 1369-1372.
Laheurte, F. and Barthelin, J. (1998). Effect of phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil, 105: 11-17.
Lal, R. (1998). Soil quality and agriculture sustainability. In: Lal, R. (Ed), Soil Quality and Agricultural Sustainability. Lewis Publishers, Boca Raton, Florida, pp. 3-13.
Lee, C. C. (1999). Organic waste treatment and sustainable agriculture. In: Huang, S. F., Lu, H. S. and Chu, C. (Eds), Treatment and Application of Agricultural Organic Wastes. The Biomass Energy Society of China, Taipei, Taiwan, pp. 1-7.
Lessie, T. G., Berka, T. and Zamanigian, T. S. (1984). Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation. Journal of Bacteriology, 139: 323-325.
Leyval, C. and Berthelin, J. (1989). Interaction between Agrobacterium radiobacter and beech root:Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant and Soil, 117: 103-110.
Li, M., Osaki, M., Rao, I. M. and Tadano, T. (1997). Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Plant and Soil, 195: 161-169.
Lin, J. K. (1994). Effect of hog waste compost on the soil mciroflora and activity in different environmental conditions. In: Final Report of Soil and Fertilizer Reseach 1994. Department of Agriculture and Forest, Taiwan Provincial Government, Nan-Tou, Taiwan.
Lin, T. F., Huang, H. I., Shen, F. T. and Young, C. C. (2006). The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology, 97: 957-960.
Liu, S. T., Lee, L. Y., Tai, C. Y., Hung, C. H., Chang, S. Y., Wolfram, Y. H., Pogers, R. and Goldstein, A. H. (1992). Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology, 174(18): 5814-5819.
Liu, X. M., Wei, J. P., Tan, F. S., Zhou, S. M., Wurthwein, G. and Rohdewald, P. (2004). Antidiabetic effect of Pycnogenol(R) French maritime pine bark extract in patients with diabetes type II. Life Science, 75 (21): 2505-2513.
Loganathan, P. and Nair, S. (2003). Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnology Letters, 25: 497-501.
Louw, H. A. and Webley, D. M. (1958). A plate method for estimating the numbers of phosphate-dissolving and acid-producing bacteria in soil. Nature, 182 :1317-1318.
Louw, H. A. and Webley, D. M. (1959). A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. Journal of Applied Bacteriology, 22: 227-233.
Manndels, M., Mrdeiro, J. E., Andreotii, R. E. and Bisset, F. H. (1981). Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions. Biotechnology and Bioengineering, 23:2009-2026.
Mehta, S. and Nautiyal, C. S. (2001). An efficient method of qualitative screening of phosohate-solubilizing bacteria. Current Microbiology, 43: 51-56.
Meulenberg, J. J., Sellink, E., Riegman, N. H. and Postma, P. W. (1992). Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Molecular and General Genetics, 232(2): 284-294.
Mittal, V., Singh, O., Nayyar, H., Kaur, J. and Tewari, R. (2008). Stimulatory effect
of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium
citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40: 718-727.
Moghimi, A., Tate, M. E. and Oades, J. M. (1978). Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biology and Biochemistry, 10: 283-287.
Molla, M. A. Z., Chowdhury, A. A., Islam, A. and Hoque, S. (1984). Microbial mineralization of organic phosphate in soil. Plant and Soil, 78: 393-399.
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
Nahas, E. and Barroso, C. B. (2005). The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, 29: 73-83.
Narsian, V. and Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32: 559-565.
Nautiyal, C. S. (1997). A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Current Microbiology, 34: 12-17.
Nautyal, C. S. (1999). An efficient microbiological medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170: 265-270.
Nautiyal, C. S., Bhadauria, S., Kumar, P., Lai, H., Mondal, R. and Verma, D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters, 182: 265-270.
Nelson, D. W. and Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: Page, A. L. (Ed.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed. The American Society of Agronomy, Wisconsin, pp. 539-580.
Nurmi, J. and Hillebrand, K. (2007). The characteristics of whole-tree fuel stocks from silvicultural cleaning and thinnings. Biomass and Bioenergy, 31: 381-392.
Olsen, S. R. and Khasawneh, F. E. (1980). Use and limitations of physical-chemical criteria for assessing the status phosphorus in soil. In: Khasawneh, F. E., Sample, E. C. and Kamprathed, E. J. (Eds.), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin, pp. 361-410.
Olsen, S. R., Sommers, L. E. (1982). Phosphorus. In: Page, A. L., Miller, R. H., Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 2, Chemical and Microbial Properties, 2nd ed. American Society of Agronomy, Madison, Wisconsin, pp. 403-430.
Omar, S. A. (1998). The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14: 211-218.
Olajide, O. A., Aderogba, M. A., Adedapo, A. D. A. and Makinde, J. M. (2004). Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. Journal of Ethnopharmacology, 95(2-3): 139-142.
Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Garneiro, N. P., Guimarães, C. T., Schaffert, R. E. and Sã, N. M. H. (2008). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrano Biome. Soil Biology and Biochemistry, 30: 1-6.
Ohta, Y. and Ikeda, M. (1978). Deodorization of pig feces by actinomycetes. Applied and Environmental Microbiology, 36: 487-491.
Ouahmane, L., Thioulouse, J., Hafidi, M., Prin, Y., Ducousso, M., Galiana, A., Plenchette, C., Kisa, M. and Duponnois, R. (2007). Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. Forest Ecology and Management, 241: 200-208.
Pai, C. R., Wu, C. F., Sun, R. Y., Wei, C. B. and Yang, S. S. (2003). Composition analysis of livestock and poultry wastes during composting. Journal of the Biomass Energy Society of China, 22: 57-71.
Parr, J. F. and Hornick, S. B. (1992). Utilization of municipal wastes. In: Metting, F. B. (Ed.), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, pp. 545-559.
Parr, J. F., Hornick, S. B. and Kanfman, D. D. (1994). Use of microbial inoculants and organic fertilizers in agricultural production. In: International Seminar on the Use of Microbial and Organic Fertilizers in Agricultural Production. Rural Development Administration of Republic of Korea and Food and Fertilizer Techonology Center, Suwon, Korea, pp. 1-40.
Paul, E. A. and Clark, F. E. (1988). Soil Microbiology and Biochemistry. Academic Press, San Diego, CA.
Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceeding of National Academy of Science (USA), 85:2444-2448.
Reyes, I., Bernier, L. and Antoun, H. (2002). Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology, 44: 39-48.
Richardson, A. E. (1994). Soil microorganisms and phosphorus availability. In: Pankhurst, C. E., Doube, B. M., Gupts, V. V. S. R. and Grace, P. R. (Eds.), Soil Biota, Management in Sustainable Farming Systems. CSIRP Australia, Victoria, pp. 50-62.
Piccini, D. and Azcon. R. (1987). Effect of phosphate-solubilizing bacteria and vescular-arbuscular mycorrhiza fungi on the utilization of Bayovar rock phosphate by alfafa plants using a sand-vermiculate medium. Plant and Soil, 101: 45-50.
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the
vial activity of some microbial species. Mikrobiology, 17: 362-370.
Raj, J., Bagyaraj, D. J. and Manjunath, A. (1981). Influence of soil inoculation with vescular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and P-uptake. Soil Biology and Biochemistry, 13: 105-108.
Ralston, D. B. and Mcbride. R. P. (1976). Interaction of mineral phosphate-dissolving microbes with red pine seedlings. Plant and Soil, 45: 493-507.
Reddy, M. S., Kumar, S., Babita, K. and Reddy, M. S. (2002). Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technology, 84: 187-189.
Reyes, I., Bernier, L., Simard, R. R., Tanguay, P. and Antoun, H. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 28: 291-295.
Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. and Martínez-Molina, E. (2001). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis, 22: 1086–1089.
Rodríguez, H. and Reynaldo, F. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
Rodríguez, H., Gonzalez, T. and Selman, G. (2000). Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal of Biotechology, 84: 155-161.
Rosenburg, S. L. (1975). Temperature and pH optimum for 21 species of thermophilic and thermotolerant fungi. Canadian Journal of Microbiology, 21: 1535-1540.
Ross, D. J. K., Tate, R., Cairus, A., Mayricbt, K. F. and Pursie, E. A. (1982). Restoration of Pasteur after topsoil removal: effect of soil carbon and nitrogen mineralization, microbial biomass and enzyme activities. Soil Biology and Biochemistry, 14: 575-583.
Rudresh, D. L., Shivaprakash, M. K. and Prasad, R. D. (2005a). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Tichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer arietinu L.). Applied Soil Ecology, 28: 139-146.
Rudresh, D. L., Shivaprakash, M. K. and Prasad, R. D. (2005b). Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology, 51:217-222.
Sambrook, J., Fritsch, E. E. and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, New York.
Sarathchandra, S. U., Lee, A., Perritt, K. W., Rajan, S. S. S. and Oliver, E. H. A. (1993). Effect of phosphate fertilizer applications in microorganisms in pastoral soils. Australian Journal of Soli Research, 31: 299-309.
Sayer, J. A. and Gadd, G. M. (2001). Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 105(10): 1261-1267.
Sayer, J. A, Kierans, M. and Gadd, G. M. (1997). Solubilisation of some naturally occurring metal-bearing minerals, limescalc and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154: 29-35.
Saber, M. S. M., Yousry, M. and Kabesh, M. (1977). Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants. Plant and Soil, 45: 493-507.
Salva, D., Tokuioshi, K., Martins, E. D. S., Silva, R. D. and Gomes, E. (2005). Production of pectinase by soil-state fermentation with Penicillium viridicatum RFC3. Process Biochemistry, 40:2885-2889.
Sarikaki, V., Rallis, M., Tanojo, H., Panteri, I., Dotsikas, Y., Loukas, Y. L., Papaioannou, G., Demetzos, C., Weber, S., Moini, H., Maibach, H. I. and Packer, L. (2004). In vitro percutaneous absorption of pine bark extract (Pycnogenol) in human skin. Journal of Toxicology-Cutaneous and Ocular Toxicology, 23 (3): 149-158.
Shen, J., Li, R., Zhang, F., Fan, J., Tang, C. and Rengel, Z. (2004). Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research, 86: 225-238.
Shenoy, V. V. and Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23:501-513.
Shekhar Sharma, H. S. and Johri, B. N. (1992). The role of thermophilic fungi in agriculture. In: Arora, D. K., Elander, R. P. and Mukerji, K. G. (Eds), Handbook of Applied Mycology, Vol. 4, Fungal Biotechnology. Marcel Dekker Inc., New York, pp. 707-727.
Sharpley, A. and Moyer, B. (2000). Phosphorous forms in manure and compost and their release during simulated rainfall. Journal of Environmental Quality, 29: 1462-1469.
Simine, C. D., Sayer, D. J. A. and Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28: 87-94.
Solis, C., Becerra, J., Flores, C., Robledo, J. and Silva, M. (2004). Antibacterial and antifungal terpenes from Pilgerodendron uviferum (D. Don) Florin. Journal of the Chilean Chemical Society, 49(2): 157-161.
Son, H. J., Park, G. T., Cha, M. S. and Heo, M. S. (2006). Solubilizing of inorganic phosphates by salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97: 204-210.
Sparling, G. P., Ord, B. G. and Vaugham, D. (1981). Microbial biomass and activity in soil amended with glucose. Soil Biology and Biochemistry, 16: 673-674.
Sperber, J. I. (1958a). Solution of mineral phosphate by soil bacteria. Nature, 180:994-995.
Sperber, J. I. (1958a). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9: 778-781.
Sperber, J. I. (1958c). Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research, 9: 782-787.
Sperber, J. I. (1958d). Release of phosphate from soil minerals by hydrogen sulphide. Nature, 181: 934-935.
Starnes, D. L., Padmanabhan, P. and Sahi, S. V. (2008). Effect of P sources on
growth, P accumulation and activities of phytase and acid phosphatases in two
cultivars of annual ryegrass (Lolium multiflorum L.). Plant Physiology and
Biochemistry, 46: 580-589.
Strom, P. F. (1985). Identification of thermophilic bacteria in solid-waste composting. Applied and Environmetal Microbiology, 50: 906-913.
Struthers, P. H. and Seiling, G. H. (1960). Effect of organic anions on phosphate precipitation by iron and aluminum as influenced by pH. Soil Science, 69: 205-213.
Subba Rao, N. S. (1982a). Biofertilizers in agriculture. New Delhi, pp. 129-136.
Subba Rao, N. S. (1982b). Utilization of farm wastes and residues in agriculture. In: Subba Rao, N. S. (Ed.), Advances in Agricultural Microbiology. Butterworth Scientific, London, pp. 509-521.
Suh, J. S., Lee, S. K., Kim, K. S. and Seong, K. Y. (1995). Solubilization of insoluble phosphate by Peudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. Journal of Korean Society of Soil Science and Fertilizer, 28: 278-286.
Taha, S. M., Mahmoud, S. A. Z., El-Damaty, A. H. and El-Hafez, A. M. A. (1969). Activity of phosphate dissolving bacteria in Egyptian soil. Plant and Soil, 31: 149-160.
Tanaka, Y., Murata, A. and Hayashida, S. (1995). Accelerated composting of cereal shochu-distillery wastes by actinomycetes: promotive composting of shochu-distillery waster (I). Seibutsu-Kogaku Kaishi, 73: 365-372.
Tchan, Y. T. and New, P. B. (1987). Genus 1. Azotobacter Beijerinck 1907, 567.AL. In:
Krieg, N. R. and Holt, J. G. (Eds.), Bergey’s Manual of Systematic Bacteriology,
8th Ed., Vol. 1. Williams and Wilkins Co., Baltimore, pp. 220-229.
Thambirajah, J. J., Zulkali, M. D. and Hashim, M. A. (1995). Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches: effect of nitrogen supplementation on the substrates. Bioresource Technology, 52: 133-144.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins., D. G. (1997). The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuclei Acid Research, 24: 4876-4882.
Tisdale, S. L., Nelson, W. L. and Beaton, J. D. (1985). Soil Fertility and Fertilizers. Macmillan, New York, pp. 189-248.
Traina, S. J., Sposito, G., Hesterberg, D. and Kafkafi, U. (1986). Effect of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Science Society of America, 50: 45-52.
Tsai, S. H., Liu C. P. and Yang, S. S. (2007). Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renewable Energy, 32: 904-915.
Tsai, S. H., Wei, C. B. and Yang, S. S. (2002). Quality of food waste compost produced by local autonomy group in Taipei City. Journal of the Biomass Energy Society of China, 21: 103-117.
Vassilev, N. and Vassileva M. (2003). Biotechnological solubilization of rock phosphate on media containing aro-industrial wasts. Applied of Microbiology and Biotechonology, 61: 435-440.
Vinnerås, B., Björklund, A. and Jönsson, H. (2003). Thermal composting of faecal matter as treatment and possible disinfection method-laboratory-scale and pilot-scale studies. Bioresource and Technology, 88: 47-54.
Welch, S., Taunton, A. and Banfield, J. (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19: 343-367.
Wakelin, S. A., Warren, R. A., Harvey, P. R. and Ryder, M. H. (2004). Phosphate soluilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils, 40: 36-43.
Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. and Wong, M. H. (2005). Effect of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155-166.
Xiao, C. Q., Chi, R. A., Huang, X. H., Zhang, W. X., Qiu, G. Z. and Wang, D. Z. (2008). Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, 33: 197-193.
Yang, D. Q., Wang, X. M., Shen, J. and Wan, H. (2004). A rapid method for evaluating antifungal properties of various barks. Forest Products Journal, 54 (6): 37-39.
Yang, S. S. (1988). Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation. Biotechnology and Bioengineering, 32: 886-890.
Yang, S. S. (1994). Compost and agricultural production in Taiwan. Soil Fertility in Taiwan, 29-62.
Yang, S. S. (1997a). Preparation of compost and evaluating its maturity. Food and Fertilizer Technology Center Extention Bulletin, 445: 1-23.
Yang, S. S. (1997b). Preparation and characterization of compost. Journal of the Biomass Energy Society of China, 16: 47-62.
Yang, S. S. (1997c). Preparation and maturity evaluation of composts. In: International Workshop on Quality Control of Organic Fertilizer. Rural Development Administration of Republic of Korea and Food and Fertilizer Technology Center, Suwon, Korea, pp:35-70.
Yang, S. S. (2000). Recent advance in composting. In: Huang, S. F., Pan, S. Y. and Kao, C. F. (Eds), Proceedings of the International Seminar on Issues in the Management of Agricultural Resources. Food and Fertilizer Technology Center for the Asian and Pacific Region and National Taiwan University, Taipei, Taiwan, pp. 166-185.
Yang, S. S. (2003). Application of microbial fertilizers on the three objectives agriculture. In: Chou, C. H. and Yang, S. S. (Eds), Challenge of Three Objectives in Agriculture. Council of Agriculture, Southern Taiwan Joint Services Center of Executive Yuan, Institute of Biotechnology of National Pingtung University of Science and Technology, Department of Biochemical Science and Technology of National Taiwan University, Taiwan, pp. 265-292.
Yang, S. S., Chang, S. L., Wei, C. B. and Lin, H. C. (1991a). Reduction of waste production in the Kjeldahl method. Journal of the Biomass Energy Society of China, 10: 147-155.
Yang, S. S. and Chen, K. S. (2003). Application of thermophilic microbes for preparing biofertilizers. Plant Protection Bulletin Special Publication New, 5: 267-291.
Yang S. S., Fan, Y. H., Yang, C. K. and Lin. I. C. (2003a). Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere, 52: 1489-1498.
Yang, S. S., Lin, C. F. and Wang, C. K. (2003b). Wastes Treatment and Re-Utilization, 2nd ed. National Open University, Taipei, Taiwan, pp. 501.
Yang, S. S., Wei, C. B., Koo, K. and Tsai, S. S. (1991b). Food and agricultural wastes produced in Taiwan area. Journal of the Biomass Energy Society of China, 10: 70-87.
Ye, Y. F., Min, H. and Du, Y. F. (2004). Characterization of a strain of Sphigobacteriam sp. and its degradation to herbicide mefenacet. Journal of Environmental Science, 16: 343-347.
Yen, S. Y. (1994). Microbial activity during the composting of wastes. In: Proceedings of Compost Technology and Utilization. The Biomass Energy Society of China, Taipei, Taiwan, pp. 67-83.
Young, C. C. (1990). Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of the tree species in subtropical-tropical soils. Soil Science and Plant Nutrition, 36: 245-254.
Zayed, G. and Abdel-Motaal, H. (2005a). Bioactive composts from rice straw enriched with rock phosphate and their effect on phosphorus nutrition and microbial community in rhizosphere of cowpea. Bioresource Technology, 96:929-935.
Zayed, G. and Abdel-Motaal, H. (2005b). Bio-production of compost with low pH and soluble phosphorus from sugar cane bagasse enriched with rock phosphate. World Journal of Microbiology and Biotechnology, 21: 741-752.
Zhao, Y., Li, W., Zhou, Z., Wang, L., Pan, Y. and Zhao, L. (2005). Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. European Journal of Soil Biology, 41:21-29.
Zou, X., Binkley, D. and Doxtader, K. G. (1992). A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147: 243-250.