跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張政雄
研究生(外文):Cheng-Hsiung Chang
論文名稱:耐高溫溶磷微生物分離及多功能性生物肥料製作
論文名稱(外文):Thermo-Tolerant Phosphate-Solubilizing Microbe Isolation and Multi-Functional Biofertilizer Preparation
指導教授:楊盛行楊盛行引用關係
指導教授(外文):Shang-Shyng Yang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:464
中文關鍵詞:堆肥耐高溫溶磷微生物溶磷活性多樣性酵素活性可溶性磷腐熟多功能性生物肥料
外文關鍵詞:CompostThermo-tolerant phosphate-solubilizing microbesPhosphate-solubilizing activityMulti-functional microbesMaturitySoluble phosphorusMulti-fuctional biofertilizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為了偵測堆肥和生物肥料堆積過程中溫和耐高溫溶磷微生物菌相變化及其溶磷活性,使用National Botanical Research Institute’s phosphate growth medium (NBRIP)、Pikovsakaya’s medium (PVK)及sucrose calcium phosphate medium (SCP)三種培養基進行研究。三種磷酸鈣培養基均可應用於偵測生物肥料和豬糞堆肥堆積過程中溫和耐高溫溶磷微生物菌相變化。但耐高溫溶磷微生物分離株則以PVK平板檢測法於25和50°C培養時均可得較快生長和較高溶三磷化鈣活性。因此PVK為偵測堆肥和生物肥料耐高溫溶磷微生物菌相及其溶三磷化鈣活性之較佳培養基。雞糞堆肥測得較高堆肥溫度及耐高溫溶磷微生物族群,而豬糞堆肥則為較低堆肥溫度及較高中溫溶磷微生物族群。由禽畜糞堆肥採集22次和生物肥料4次分別以NBRIP、PVK及SCP平板檢測法進行篩選得977株溶磷微生物分離株,挑選生長快速、產生明顯溶磷圈及高溶三磷化鈣活性參數(TCPSAI)之47株耐高溫溶磷細菌、6株耐高溫溶磷放線菌及4株耐高溫溶磷黴菌再進行NBRIP、PVK及SCP液態檢測法。PVK為耐高溫溶磷微生物表現溶三磷化鈣活性最佳的培養基。PVK於25°C培養時最適合耐高溫溶磷黴菌表現溶三磷化鈣活性和酸化培養基能力,而PVK於50°C培養時最適合耐高溫溶磷細菌和放線菌表現溶三磷化鈣活性和酸化培養基能力。耐高溫溶磷微生物產生有機酸為其主要的溶無機磷機制。耐高溫溶磷細菌表現溶三磷化鈣磷活性與其酸化培養基能力有顯著(P>0.001)負相關,但與NBRIP和PVK平板檢測法測得TCPSAI有顯著(P>0.05)正相關而與菌落和溶磷圈直徑並無明顯相關。於25和50°C培養時,8株耐高溫溶磷細菌分離株(C45、D12、F10、F18、G39、H28、O1、V1及V8)、2株耐高溫溶磷放線菌(J57和W6)及2株耐高溫溶磷黴菌(O4和P50)表現較高溶三磷化鈣活性。8株細菌分離株和4株黴菌分離株具溶三磷化鈣、磷酸鐵、磷酸鋁、hydroxyapatite以及以色列磷礦石活性,其中細菌分離株C45、F18、O1及V1與黴菌分離株O4、P50及T13於25和50°C培養時均具有溶解此5種磷酸鹽活性。細菌分離株F18於50°C培養時得較高溶三磷化鈣活性(532.5±77.2 µg ml-1)、溶磷酸鋁活性(119.9±3.1 µg ml-1)、溶磷酸鐵活性(10.2±0.4 µg ml-1)及溶以色列磷礦石活性(433.1±64.0 µg ml-1)。細菌分離株F10於25°C時得較高溶三磷化鈣活性(594.5±88.0 µg ml-1)。黴菌分離株O4於25°C時得較高溶磷酸鋁活性(106.2±7.9 µg ml-1)和溶磷酸鐵活性(92.4±5.8 µg ml-1)。放線菌分離株J57得較高溶以色列磷礦石活性(288.1±38.6 µg ml-1)。10株細菌分離株和4株黴菌分離株具中溫和耐高溫澱粉、纖維素、幾丁質及果膠質分解酵素與固氮酵素活性。細菌分離株A3、C45、O1及V1與黴菌分離株O4和T13於25和50°C培養時均具有此6種酵素能力。細菌分離株A3具較高中溫和耐高溫纖維、蛋白質及脂質分解酵素與固氮酵素活性。許多分離株於25和50°C培養時表現抗菌活性。接種耐高溫溶磷微生物於農業和禽畜糞廢棄物堆肥可加速腐熟、增加可溶性磷含量及提高品質,且增進中溫和耐高溫溶磷、纖維素分解、蛋白質分解及脂質分解微生物生長以製備多功能性生物肥料。相較於耐高溫溶磷放線菌和黴菌,接種耐高溫溶磷細菌可縮短腐熟時間、增進生物肥料品質及釋放更多可溶性磷,且以接種A3、C45、F18及V1為較佳。添加適量(1-5% w/w)松樹素可加速農業和禽畜糞廢棄物堆肥於好氣堆積下之腐熟速度,提升耐高溫溶磷和纖維素分解微生物族群及可溶性磷含量。混合接種數種耐高溫溶磷微生物或配合松樹素一起添加於農業廢棄物、廚餘、蔬果市場及禽畜糞廢棄物,可製備成多功能生物肥料。具生物堆肥製作、資源回收、農業生產及永續農業經營之應用價值。
In order to survey the mesophilic and thermo-tolerant phosphate-solubilizing microbial populations during compost and biofertilizer preparation, National Botanical Research Institute’s phosphate growth medium (NBRIP)、Pikovsakaya’s medium (PVK), and sucrose calcium phosphate medium (SCP) were used. These three kinds of tricalcium phosphate (TCP) media were suitable to determine the populations of mesophilic and thermo-tolerant phosphate-solubilizing microbes. Thermo-tolerant phosphate-solubilizing microbial isolates displayed the faster growth rates and the higher TCP-solubilizing activities grown at 25 and 50°C by PVK plate assay, and the growths and TCP-solubilizing activities shown by plate assay were not related with the TCP isolation medium. Therefore, PVK is definitely presumed the best medium not only for determining the populations of mesophilic and thermo-tolerant phosphate-solubilizing microbes in compost and biofertilizer preparation, but also for evaluating the TCP-solubilizing activities of thermo-tolerant phosphate-solubilizing microbes. The poultry and livestock waste composts were sampled 22 times and the biofertilizers were done 4 times in this study. Nine hundred and seventy seven phosphate-solubilizing microbes were isolated by serial dilution and pour plate method, and determined the TCP-solubilizing activities by plate assay with NBRIP, PVK, and SCP. Forty seven thermo-tolerant phosphate-solubilizing bacteria, 6 thermo-tolerant phosphate-solubilizing actinomycetes, and 4 thermo-tolerant phosphate-solubilizing fungi were further selected for the fast growths, manifest halo surrounding the colony, and high TCP-solubilizing activities indices (TCPSAI) at 25 or 50°C. PVK was the best medium with which the thermo-tolerant phosphate-solubilizing fungi could perform their TCP-solubilizing activities and medium-acidifying abilities grown at 25°C, while thermo-tolerant phosphate-solubilizing actinomycetes and bacteria could do at 50°C. Production of organic acids by the thermo-tolerant phosphate-solubilizing microbial isolates for solubilizing the inorganic phosphorus is the major mechanism. The inorganic phosphate-solubilizing activity and acidification ability of the thermo-tolerant phosphate-solubilizing bacteria showed the significantly (P>0.001) negative correlation. The TCPSAI obtained by NBRIP and PVK plate assay represented the significantly (P>0.05) positive correlation with the true TCP-solubilizing activity by broth assay, however, the diameters of colony sizes and clear zones did not. Eight thermo-tolerant phosphate-solubilizing bacterial isolates (C45, D12, F10, F18, G39, H28, O1, V1, and V8), 2 thermo-tolerant phosphate-solubilizing actinomycete isolates (J57 and W6), and 2 thermo-tolerant phosphate-solubilizing fungi manifested the high TCP-solubilizing activity by broth assay at 25 and/or 50°C. Eight bacterial and 4 fungal isolates possessed TCP-, aluminum phosphate-, iron phosphate-, hydroxyapatide-, and Israel rock phosphate-solubilizing activities, and among them, bacterial isolates C45, F18, O1, and V1, and fungal isolates O4, P50, T13 expressed this 5 kinds of inorganic phosphate-solubilizing activities at both 25 and 50°C. The bacterial isolate F18 manifested the higher Ca3(PO4)2-solubilizing activity (532.5±77.2 µg ml-1), AlPO4-solubilizing activity (119.9±3.1 µg ml-1), FePO4-solubilizing activity (10.2±0.4 µg ml-1), and Israrl rock phosphate-solubilizing activity (433.1±64.0 µg ml-1) grown at 50°C. The bacterial isolates F10 represented the higher Ca3(PO4)2-solubilizing activity (594.5±88.0 µg ml-1) growing at 25°C; the fungal isolate O4 revealed the higher AlPO4-solubilizing activity (106.2±7.9 µg ml-1), and FePO4-solubilizing activity (92.4±5.8 µg ml-1) grown at 25°C; the actinomycete isolate J57 displayed the higher Israrl rock phosphate-solubilizing activity (288.1±38.6 µg ml-1). Ten thermo-tolerant phosphate-solubilizing bacteria and four thermo-tolerant phosphate-solubilizing fungi possessed mesophilic and/or thermo-tolerant amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. The bacterial isolates A3, C45, O1, and V1, and the fungal isolates O4 and T13 carried out those 6 kinds of enzyme activities grown at both both 25 and 50°C. The isolate A3 manifested the higher amylase, CMCase, protease, lipase, and nitrogenase activities. Some of thermo-tolerant phosphate-solubilizing microbial isolates also possessed anti-microbial activities. The inoculation with these thermo-tolerant phosphate-solubilizing microbes into agricultural, poultry and livestock waste composts accelerated the maturity rates, elevated the soluble phosphorus contents, improved the quality, and increased the populations of mesophilic and thermo-tolerant phosphate-solubilizing bacteria, cellulolytic microbes, proteolytic microbes, and lipolytic microbes throughout preparation of multi-functional biofertilizers. Inoculation with thermo-tolerant phosphate solubilizing bacteria could more short the maturity time, improve the quality, and more release more soluble phosphorus than actinomycetes or fungi did. The bacterial isolates A3, C45, and F18 are the ideal candidates for application. Supplement of appropriate quantity (1-5%, w/w) polyelectrolyte oxygen detoxifier (POD) into the agricultural, and poultry and livestock waste composts could speed the maturity, enhance soluble phosphorus contents, improve the quality, and propagate the populations of mesophilic and thermo-tolerant phosphate-solubilizing bacteria, and cellulolytic microbes during composting. The inoculation of mixed cultures containig thermo-tolerant phosphate-solubilizing bacteria and other functional microbes with supplement of POD can convert agricultural, animal, food wastes, and vegetable and fruit market wastes into multi-functional biofertilizers for bioresource recycling, agricultural applications, and prospective for sustainable argriculture.
口試委員會審定書 I
謝誌 II
中文摘要 III
Abstract V
目錄 IX
表目錄 XX
圖目錄 XXXII
第一章 緒論1
1.1 磷 1
1.2 溶磷微生物 3
1.3 溶磷機制 4
1.4 溶磷微生物之應用 7
1.5 溶磷基因 11
1.6 肥料 13
1.6.1 肥料分類 13
1.6.2化學肥料 13
1.6.3有機肥料 14
1.6.4 生物肥料 16
1.7 堆肥 18
1.8 耐高溫溶磷微生物 20
1.9 禽畜糞廢棄物 21
1.10 永續農業 24
1.11 多功能耐高溫溶磷微生物與生物肥料製作 25
1.12 研究目標 29

第二章 堆肥和生物肥料溶磷菌相研究及分離方法建立 30
2.1 摘要 30
2.2 前言 31
2.3 材料與方法 32
2.3.1 堆肥樣品和生物肥料樣品來源 32
2.3.2 堆肥採集 32
2.3.3 培養基 32
2.3.3.1 營養洋菜培養基(Nutrient agar, NA) (Merck, Germany) 32
2.3.3.2 Potato dextrose agar (PDA) (Merck, Germany) 33
2.3.3.3 Pikovskaya medium (PVK) 33
2.3.3.4 Sucrose calcium phosphate medium (SCP) 33
2.3.3.5 National Botanical Research Institute’s phosphate growth medium 33
2.3.4 培養條件 33
2.3.5 溶磷微生物計數和分離 34
2.3.6 溶磷微生物分類 34
2.3.7 耐高溫PSMs的活化 35
2.3.8 平板檢測法 35
2.3.8 統計分析 35
2.4 結果與討論 25
2.4.1 豬糞堆肥堆積過程溶磷菌相 36
2.4.2 生物肥料溶磷菌相 38
2.4.2 豬糞堆肥溶磷微生物分離 39
2.4.2.1 豬糞堆肥耐高溫溶磷細菌分離株生長和溶磷活性 39
2.4.2.1.1 以NBRIP篩選之耐高溫溶磷細菌 39
2.4.2.1.2 以PVK篩選之耐高溫溶磷細菌 42
2.4.2.1.3 以SCP篩選之耐高溫溶磷細菌 44
2.4.2.2 生物肥料耐高溫溶磷微生物分離 33
2.4.2.2.1 以NBRIP篩選之耐高溫溶磷細菌 48
2.4.2.2.2 以PVK篩選之耐高溫溶磷細菌 50
2.4.2.2.3 以SCP篩選之耐高溫溶磷細菌 52
2.4.3 豬糞堆肥和生物肥料溶磷微生物分離株生長和溶磷活性 55
2.5 結論 57

第三章 禽畜糞堆肥和生物肥料溶磷菌相及溶磷微生物分離 98
3.1 摘要 98
3.2 前言 99
3.3 材料與方法 101
3.3.1 堆肥樣品和生物肥料樣品 101
3.3.2 堆肥採集方法 102
3.3.3 培養基 102
3.3.4 培養條件 102
3.3.5 溶磷微生物計數和分離 102
3.3.6 溶磷微生物分類 102
3.4 結果與討論 102
3.4.1 禽畜糞堆肥和生物肥料之性質和溶磷微生物相 102
3.4.1.1 豬糞堆肥 102
3.4.1.2 雞糞堆肥 103
3.4.1.2.1 Ty1堆肥場 105
3.4.1.2.2 Ty3堆肥場 105
3.4.1.2.3 Ml1堆肥場 106
3.4.1.2.4 Hc1堆肥場 106
3.4.1.2.5 Ch2堆肥場 106
3.4.1.3 牛糞堆肥 107
3.4.1.3.1 Ty2堆肥場 108
3.4.1.3.2 Ch3堆肥場 109
3.4.1.4 生物肥料 109
3.4.1.4.1 生物肥料Y 110
3.4.1.4.2 生物肥料Z 111
3.4.2 溶磷微生物分離 112
3.4.2.1 豬糞堆肥溶磷微生物分離 112
3.4.2.2 雞糞堆肥溶磷微生物分離 113
3.4.2.3 牛糞堆肥溶磷微生物分離 114
3.4.2.4 禽畜糞溶磷微生物分離 115
3.4.2.5 生物肥料溶磷微生物分離 116
3.5 結論 118

第四章 培養基和溫度對耐高溫溶磷微生物溶磷活性之影響 131
4.1 摘要 131
4.2 前言 132
4.3 材料與方法 133
4.3.1 培養基 133
4.3.2 培養條件 133
4.3.3 耐高溫溶磷微生物的活化 133
4.3.4 平板檢測法 133
4.3.5 液態檢測法 134
4.3.6 統計分析 135
4.4 結果與討論 135
4.4.1 培養基與培養溫度對溶磷微生物生長和菌落型態影響 135
4.4.1.1 耐高溫溶磷細菌生長和菌落型態 135
4.4.1.1.1 菌落 135
4.4.1.1.2 溶磷圈 136
4.4.1.1.3 溶三磷化鈣活性參數 137
4.4.1.2中溫溶磷細菌生長和菌落型態 137
4.4.1.2.1菌落 137
4.4.1.2.2 溶磷圈 138
4.4.1.2.3溶三磷化鈣活性參數 138
4.4.1.3 耐高溫溶磷放線菌生長和菌落型態 139
4.4.1.3.1 菌落 139
4.4.1.3.2 溶磷圈 139
4.4.1.3.3溶三磷化鈣活性參數 140
4.4.1.4 中溫溶磷放線菌生長和菌落型態 141
4.4.1.4.1 菌落 141
4.4.1.4.2 溶磷圈 141
4.4.1.4.3溶三磷化鈣活性參數 141
4.4.1.5 耐高溫溶磷黴菌生長和菌落型態 142
4.4.1.5.1 菌落 142
4.4.1.5.2 溶磷圈 143
4.4.1.5.3 溶三磷化鈣活性參數 143
4.4.1.6 中溫溶磷黴菌生長和菌落型態 144
4.4.1.6.1 菌落 144
4.4.1.6.2 溶磷圈 144
4.4.1.6.3溶三磷化鈣活性參數 144
4.4.2 耐高溫溶磷細菌分離株多樣性 145
4.4.3 耐高溫溶磷微生物的篩選 147
4.4.4 三種三磷化鈣培養基對於耐高溶磷微生物溶三磷化鈣活性影響 147
4.4.4.1 無菌對照實驗組 147
4.4.4.2 pH和溶三磷化鈣活性偵測 147
4.4.4.3 培養基和溫度對於耐高溫溶磷微生物溶三磷化鈣活性影響 148
4.4.4.4 pH與培養時間對耐高溫溶磷微生物溶三磷化鈣活性影響 152
4.4.4.4.1 耐高溫溶磷微生物溶三磷化鈣活性 152
4.4.4.4.2 PVK液態檢測法 153
4.4.4.4.3 SCP液態檢測法 154
4.4.4.4.4 NBRIP液態檢測法 155
4.4.4.4.5 耐高溫溶磷細菌分離株液態檢測法連續偵測 157
4.4.4.4.6 pH與耐高溫溶磷微生物溶三磷化鈣活性相關性 161
4.4.4.4.7 具高溶三磷化鈣活性耐高溫溶磷微生物之篩選 163
4.4.5 PVK、SCP及NBRIP平板檢測法與液態檢測法比較 166
4.4.5.1 耐高溫溶磷細菌之菌落型態與溶三磷化鈣活性相關性 166
4.4.5.2 耐高溫溶磷放線菌之菌落型態與溶三磷化鈣活性比較 169
4.4.5.3 耐高溫溶磷黴菌之菌落型態與溶三磷化鈣活性比較 170
4.5 結論 173

第五章 多功能微生物 274
5.1 摘要 274
5.2 前言 275
5.3 材料與方法 277
5.3.1 供試菌株 277
5.3.2 培養基 277
5.3.2.1 營養洋菜培養基 277
5.3.2.2 PDA培養基 277
5.3.2.3 三磷化鈣培養基 277
5.3.2.3.1 PVK培養基 277
5.3.2.3.2 SCP培養基 278
5.3.2.3.3 NBRIP培養基 278
5.3.2.3.4 磷酸鐵培養基 278
5.3.2.3.5 磷酸鋁培養基 278
5.3.2.3.6 Hydoxyapatite培養基 278
5.3.2.3.7 磷礦石培養基 278
5.3.2.5 可溶性澱粉-酵母抽取物培養基 279
5.3.2.6 Mendles-Reese medium培養基 279
5.3.2.7 幾丁質分解酵素分析培養基 279
5.3.2.8果膠質分解酵素分析培養基 279
5.3.2.8 蛋白質分解酵素分析培養基 279
5.3.2.9 脂質分解酵素分析培養基 280
5.3.2.10 Winogradsky’s nitrogen-free mineral培養基 280
5.3.2.11 Nitrogen-free mannitol培養基 280
5.3.2.12 抗菌活性分析培養基 280
5.3.3 培養條件 280
5.3.4 耐高溫溶磷微生物的活化 280
5.3.5 平板檢測法 280
5.3.6 液態檢測法 281
5.4 結果與討論 281
5.4.1 三磷化鈣、磷酸鐵、磷酸鋁、hydroxyapatite及磷礦石平板檢測法探討 281
5.4.2 不同磷酸鹽培養基和培養溫度對耐高溫溶磷微生物生長與菌落型態影響 281
5.4.2.1 耐高溫溶磷細菌生長與菌落型態 281
5.4.2.2 耐高溫溶磷放線菌生長與菌落型態 282
5.4.2.3 耐高溫溶磷黴菌生長與菌落型態 283
5.4.3 耐高溫溶磷微生物溶磷活性多樣性 284
5.4.3.1 功能計分設立 284
5.4.3.2 耐高溫溶磷微生物溶磷能力多樣性之功能計分評量 284
5.4.4. 磷酸鐵、磷酸鋁及磷礦石液態檢測法 285
5.4.4.4 培養基和溫度對於耐高溫溶磷細菌溶、磷酸鋁及磷礦石活性之影響 285
5.4.5 耐高溫溶磷微生物碳源之利用 287
5.4.5.1 澱粉質、纖維素、幾丁質以及果膠質分解酵素活性之偵測 287
5.4.5.2 不同單一碳源培養基和培養溫度對耐高溫溶磷微生物生長與菌落型態影響 287
5.4.5.2.1 耐高溫溶磷細菌生長與菌落型態 287
5.4.5.2.2 耐高溫溶磷放線菌生長與菌落型態 288
5.4.5.2.3 耐高溫溶磷黴菌生長與菌落型態 289
5.4.5.3 耐高溫溶磷微生物碳源利用能力多樣性探討 290
5.4.5.3.1耐高溫溶磷微生物碳源利用能力多樣性之功能計分評量 290
5.4.6 耐高溫溶磷微生物蛋白質和脂質分解酵素活性之探討 290
5.4.6.1. 耐高溫溶磷微生物蛋白質和脂質分解酵素活性偵測 291
5.4.6.2培養溫度對於耐高溫溶磷微生物在蛋白質和脂質分解酵素分析培養基平板檢測法的影響 291
5.4.6.2.1 耐高溫溶磷細菌生長與菌落型態的觀察 291
5.4.6.2.2耐高溫溶磷放線菌生長與菌落型態 292
5.4.6.2.3 耐高溫溶磷黴菌生長與菌落型態的觀察 292
5.4.7 耐高溫溶磷微生物固氮酵素活性探討 293
5.4.7.1耐高溫溶磷微生物固氮活性偵測 293
5.4.7.2培養溫度對於耐高溫溶磷微生物在固氮酵素分析培養基平板檢測法影響 293
5.4.7.2.1 耐高溫溶磷細菌生長與菌落型態 293
5.4.7.2.2耐高溫溶磷放線菌生長與菌落型態 294
5.4.7.2.3 耐高溫溶磷黴菌生長與菌落型態 294
5.4.8 耐高溫溶磷微生物抗菌活性探討 295
5.4.8.1 耐高溫溶磷微生物抗菌活性偵測 295
5.4.8.2培養溫度對於耐高溫溶磷微生物在抗菌活性培養基平板檢測法之影響 295
5.4.8.2.1耐高溫溶磷細菌生長與菌落型態 295
5.4.8.2.2耐高溫溶磷放線菌生長與菌落型態 295
5.4.8.2.3 耐高溫溶磷黴菌生長與菌落型態觀察 296
5.4.9 耐高溫溶磷微生物功能多樣性計分評量 296
5.4.10 多功能性耐高溫溶磷微生物之挑選和鑑定 296
5.5 結論 298

第六章 多功能生物肥料製作 336
6.1 摘要 336
6.2 前言 337
6.3 材料與方法 339
6.3.1 原料 339
6.3.1 供試菌株 341
6.3.2 培養基 341
6.3.2.1 營養洋菜培養基 341
6.3.2.2 PDA培養基 341
6.3.2.3 含鏈黴素和環己亞胺甘油酵母萃取物培養基 341
6.3.2.4 Rose Bengal培養基 341
6.3.2.5 PVK培養基 342
6.3.2.6 Mendles-Reese medium培養基 342
6.3.2.7 蛋白質分解酵素分析培養基 342
6.3.2.8 脂質分解酵素分析培養基 342
6.3.2.9 以三磷化鈣為唯一磷源含鏈黴素和環己亞胺甘油酵母萃取物培養基 342
6.3.2.10 以三磷化鈣為唯一磷源Rose Bengal培養基 342
6.3.3 培養條件 342
6.3.4 耐高溫溶磷微生物的活化 342
6.3.5 API ZYM試紙測試 343
6.3.6接種菌液製備 343
6.3.7 生物肥料製作 343
6.3.8 微生物相 344
6.3.9 性質分析 345
6.3.9.1 溫度 345
6.3.9.2 重量 345
6.3.9.3 顏色、黏性、顆粒大小及氣味 345
6.3.9.4 pH 345
6.3.9.5 水份含量 346
6.3.9.6 可溶性磷含量 346
6.3.9.7 發芽率 347
6.3.9.8 灰份含量 347
8.3.9.9 總有機碳含量 347
6.3.9.10 總氮含量 348
6.3.9.10 C/N 349
6.3.9.11 總磷含量 349
6.3.10 統計分析 350
6.4 結果與討論 350
6.4.1 供試耐高溫溶磷細菌分離株耐高溫酵素測試 350
6.4.2 堆肥性質分析 350
6.4.2.1 堆肥溫度 350
6.4.2.2 水份含量 352
6.4.2.3 pH 352
6.4.2.4 灰份含量 353
6.4.2.5 總有機碳 353
6.4.2.6 總氮量 353
6.4.2.7 碳氮比 354
6.4.2.8 發芽率 355
6.4.1.9 乾重消失比 356
6.4.1.10 氣味顏色顆粒飛蟲 356
6.4.3 磷變化 359
6.4.3.1 總磷含量 359
6.4.3.2 可溶性磷含量 360
6.4.3.3 溶磷效率 361
6.5 微生物相 363
6.5.1禽畜糞生物肥料(A) 363
6.5.2 禽畜糞生物肥料(B) 364
6.5.3 豬糞稻草生物肥料 367
6.6 結論 370

第七章 松樹素於禽畜糞生物肥料製作影響 396
7.1 摘要 396
7.2 前言 396
7.3 材料與方法 398
7.3.1 松樹素 398
7.3.2原料基質 398
7.3.2 培養基 399
7.3.2.1 營養洋菜培養基 399
7.3.2.2. PVK培養基 399
7.3.2.3 Mendles-Reese medium培養基 399
7.2.2.4以三磷化鈣為唯一磷源含鏈黴素和環己亞胺甘油酵母萃取物培養基 400
7.2.2.5以三磷化鈣為唯一磷源Rose Bengal培養基 400
7.2.2.6甘油酵母萃取物培養基 400
7.2.2.7以carboxymethylcellulose為唯一碳源Rose Bengal培養基 400
7.3.3肥料製作 400
7.3.4 微生物相偵測 401
7.3.5 性質分析 401
7.3.6 統計分析 401
7.4 結果與討論 401
7.4.1 原料基質和堆肥場 401
7.4.1.1 禽畜糞生物肥料原料基質 401
7.4.1.2. 生物肥料製作 405
7.4.1.2.1 性質分析 405
7.4.1.2.3 微生物相 406
7.4.1.2.4 磷含量 409
7.5 結論 410

參考文獻 421


表目錄
表2-1. 堆肥和生物肥料樣品特性 59
表2-2. 豬糞堆肥場Ch1豬糞堆肥A溶磷微生物相 60
表2-3. 豬糞堆肥場Ch1豬糞堆肥B溶磷微生物相 62
表2-4. 豬糞堆肥場Ch1豬糞堆肥E溶磷微生物相 64
表2-5. 生物肥料樣品C溶磷微生物相 65
表2-6. 生物肥料(接種土)樣品D溶磷微生物相 66
表2-7. 218株溶磷微生物分離株 66
表2-8. 豬糞堆肥堆積過程155株溶磷微生物分離株分佈 67
表2-9. 豬糞堆肥堆積過程中以National Botanical Research Institute’s phosphate growth medium (NBRIP)所分離之51溶磷微生物分離株分佈 67
表2-10. 豬糞堆肥堆積過程經由NBRIP傾倒培養基法分離之44株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 68
表2-11. 豬糞堆肥堆積過程經由NBRIP傾倒培養基法分離之44株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 69
表2-12. 豬糞堆肥堆積過程經由NBRIP傾倒培養基法分離之44株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 70
表2-13. 豬糞堆肥堆積過程經由NBRIP傾倒培養基法分離之44株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 71
表2-14. 豬糞堆肥堆積過程中以Pikovsakays’s medium (PVK)所分離之57溶磷微生物分離株分佈 72
表2-15. 豬糞堆肥堆積過程經由PVK傾倒培養基法分離之53株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 73
表2-16. 豬糞堆肥堆積過程經由PVK傾倒培養基法分離之53株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 74
表2-17. 豬糞堆肥堆積過程經由PVK傾倒培養基法分離之53株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 75
表2-18. 豬糞堆肥堆積過程經由PVK傾倒培養基法分離之53株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 76
表2-19. 豬糞堆積過程中以sucrose calcium phosphate medium (SCP)所分離之47溶磷微生物分離株分佈 77
表2-20. 豬糞堆肥堆積過程經由SCP傾倒培養基法分離之43株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 78
表2-21. 豬糞堆肥堆積過程經由SCP傾倒培養基法分離之43株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 79
表2-22. 豬糞堆肥堆積過程經由SCP傾倒培養基法分離之43株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 80
表2-23. 豬糞堆肥堆積過程經由SCP傾倒培養基法分離之43株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 81
表2-24. 豬糞堆肥堆積過程分離之140株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 82
表2-25. 生物肥料63株溶磷細菌分離株分佈 83
表2-26. 生物肥料61株耐高溫溶磷細菌分離株分佈 83
表2-27. 生物肥料由NBRIP傾倒培養基法分離之20株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 84
表2-28. 生物肥料由NBRIP傾倒培養基法分離之20株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 85
表2-29. 生物肥料由NBRIP傾倒培養基法分離之20株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 86
表2-30. 生物肥料由NBRIP傾倒培養基法分離之20株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 87
表2-31. 生物肥料由PVK傾倒培養基法分離之18株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 88
表2-32. 生物肥料由PVK傾倒培養基法分離之18株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 89
表2-33. 生物肥料由PVK傾倒培養基法分離之18株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 90
表2-34. 生物肥料由PVK傾倒培養基法分離之18株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 91
表2-35. 生物肥料由SCP傾倒培養基法分離之23株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落分佈 92
表2-36. 生物肥料由SCP傾倒培養基法分離之23株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶磷圈分佈 93
表2-37. 生物肥料由SCP傾倒培養基法分離之23株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天溶三鈣化磷活性參數(tri-calcium phosphate-solubilizing activity indices,TCPSAI)分佈 94
表2-38. 生物肥料由SCP傾倒培養基法分離之23株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 95
表2-39. 生物肥料分離之61株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 96
表2-40. 不同堆積時期豬糞堆肥和生物肥料分離之201株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 97
表3-1. 堆肥和生物肥料樣品特性 119
表3-2. 堆肥和生物肥料溫度 121
表3-3. 堆肥和生物肥料溶磷微生物相 122
表3-4. 堆肥和生物肥料堆積過程溶磷微生物相 124
表3-5. 利用傾倒培養基法初步分離溶磷微生物來源和數量 125
表3-6. 堆肥和生物肥料溶磷微生物分離株數量 126
表3-7. 不同堆肥和生物肥料堆積過程溶磷微生物分離株數量 127
表3-8. 豬糞堆肥堆積過程430株溶磷微生物分離株分佈 127
表3-9. 雞糞堆肥堆積過程343株溶磷微生物分離株分佈 128
表3-10. 牛糞堆肥堆積過程103株溶磷微生物分離株分佈 128
表3-11. 雞、牛及豬糞堆肥堆積過程876株溶磷微生物分離株分佈 129
表3-12. 生物肥料堆肥堆積過程101株溶磷微生物分離株分佈 129
表3-13. 禽畜糞堆肥和生物肥料所分離977株溶磷微生物分佈 130
表4-1. 621株耐高溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 174
表4-2. 621株耐高溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶磷圈分佈 175
表4-3. 621株耐高溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 176
表4-4. 202株耐中溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 177
表4-5. 202株耐中溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶磷圈分佈 178
表4-6. 202株耐中溫溶磷細菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 179
表4-7. 50株耐高溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 180
表4-8. 50株耐高溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶磷圈分佈 181
表4-9. 50株耐高溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 182
表4-10. 40株耐中溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 182
表4-11. 40株耐中溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶磷圈分佈 183
表4-12. 40株耐中溫溶磷放線菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 184
表4-13. 23株耐高溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 185
表4-14. 23株耐高溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶磷圈分佈 188
表4-15. 23株耐高溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 188
表4-16. 42株中溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養菌落分佈 189
表4-17. 42株中溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養 溶磷圈分佈 191
表4-18. 42株中溫溶磷黴菌分離株於PVK、SCP與NBRIP平板檢測法五天培養溶三磷化鈣參數分佈 192
表4-19. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於50°C培養菌落前25大之耐高溫溶磷細菌分離株 193
表4-20. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於25°C培養菌落前25大之耐高溫溶磷細菌分離株 194
表4-21. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於50°C培養溶磷圈前25大之耐高溫溶磷細菌分離株 195
表4-22. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於25°C培養溶磷圈前25大之耐高溫溶磷細菌分離株 196
表4-23. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於50°C培養溶三磷化鈣參數前25高之耐高溫溶磷細菌分離株 197
表4-24. 621株耐高溫溶磷細菌以PVK、SCP與NBRIP平板檢測法於25°C培養溶三磷化鈣參數前25高之耐高溫溶磷細菌分離株 198
表4-25. 50株耐高溫溶磷放線菌以PVK、SCP與NBRIP平板檢測法於50°C培養菌落前15大之耐高溫溶磷放線菌分離株 199
表4-26. 50株耐高溫溶磷放線菌以PVK、SCP與NBRIP平板檢測法於50°C培養溶磷圈前15大之耐高溫溶磷放線菌分離株 200
表4-27. 51株耐高溫溶磷放線菌以PVK、SCP與NBRIP平板檢測法於50°C培養培養溶三磷化鈣前15高之耐高溫溶磷放線菌分離株 201
表4-28. 977株溶磷微生物以PVK、SCP與NBRIP平板檢測法於25和50°C培養5天所挑選菌株特性 202
表4-29. 未接菌PVK、SCP以及NBRIP液態培養基於25和50°C連續培養10天測得之pH和可溶性磷含量 208
表4-30. 耐高溫溶磷細菌分離株於PVK、SCP及NBRIP平板和液態檢測法溶三磷化鈣活性比較 209
表4-31. 中溫溶磷細菌分離株於PVK、SCP及NBRIP平板和液態檢測法溶三磷化鈣活性比較 222
表4-32. 耐高溫溶磷放線菌分離株於PVK、SCP及NBRIP平板和液態檢測法溶三磷化鈣活性比較 223
表4-33. 耐高溫溶磷黴菌分離株於PVK、SCP及NBRIP平板和液態檢測法溶三磷化鈣活性比較 225
表4-34. 耐高溫溶磷分離株以PVK、SCP以及NBRIP液態培養基於25和50°C培養時所測得溶三磷磷化鈣能力之排列與計分 226
表4-35. 耐高溫溶磷微生物於PVK液態培養基25和50°C所得之最高溶三磷化鈣活性 228
表4-36. 耐高溫溶磷微生物於SCP液態培養基25和50°C時所得之最高溶三磷化鈣活性 230
表4-37. 耐高溫溶磷微生物於NBRIP液態培養基於25和50°C時所得之最高溶三磷化鈣活性 232
表4-38. 以NBRIP、PVK及SCP平板檢測法所得菌落、溶磷圈及溶三磷化鈣參數與以液態檢測法連續偵測10天所得pH和溶三磷化鈣活性 234
表4-39. 47株耐高溫溶磷細菌分離株以NBRIP、PVK及SCP液態檢測法所得pH分佈 261
表4-40. 47株耐高溫溶磷細菌分離株以NBRIP、PVK及SCP液態檢測法所得可溶性磷含量分佈 264
表4-41. 47株耐高溫溶磷細菌分離株以NBRIP、SCP及PVK液態檢測法於25和50°C培養10天可得最高可溶性磷含量數量比 266
表4-42. 47株耐高溫溶磷細菌分離株以NBRIP、SCP及PVK液態檢測法於25和50°C培養天數對其表現最高可溶性含量影響 266
表4-43. 47株耐高溫溶磷細菌分離株以NBRIP、SCP及PVK液態檢測法於25和50°C培養所得pH和可溶性磷含量相關性分析 267
表4-44. 耐高溫溶磷微生物分離株以液態檢測法所得之pH (X)與所得最高溶三磷化鈣活性(Y)之直線歸相關性分析 268
表4-45. 已發表之中溫溶磷菌和本研究所分離之具有較佳溶磷能力的耐高溫溶磷微生物在PVK和NBRIP液態培養下溶磷酸鈣活性比較 269
表4-46. 621株耐高溫溶磷細菌以NBRIP、PVK及SCP平板檢測法於25和50°C培養五天菌落、溶磷圈及溶三鈣化磷活性參數分佈 270
表4-47. 47株耐高溫溶磷細菌分離株以NBRIP、SCP及PVK平板和液態檢測法於25和50°C培養5天所得菌落型態參數和可溶性磷含量相關性分析 272
表4-48. 耐高溫溶磷微生物之平板檢測法(X)和液態檢測法中所得溶磷酸鈣能力(Y)之直線回歸相關性分析 273
表5-1. 不同磷酸鹽培養基對耐高溫溶磷細菌分離株生長和溶磷活性比較 300
表5-2. 不同磷酸鹽培養基對耐高溫溶磷放線菌分離株生長和溶磷活性比較 305
表5-3. 不同磷酸鹽培養基對耐高溫溶磷黴菌分離株生長和溶磷活性比較 306
表5-4. 耐高溫溶磷微生物分離株溶磷多樣性之功能計分評量 307
表5-5. 未接菌之磷酸鐵、磷酸鋁以及磷酸鈣液態培養基於25和50°C連續培養10天所得之可溶性磷含量和pH 309
表5-6. 具有較高溶三磷化鈣活性之耐高溫溶磷微生物分離株在磷酸鐵和磷酸鋁液態檢測法之pH和最高溶磷活性 310
表5-7. 不同碳源對於耐高溫溶磷細菌分離株生長和酵素活性影響 312
表5-8. 不同碳源對於耐高溫溶磷放線菌分離株生長和酵素活性影響 317
表5-9. 不同碳源對於耐高溫溶磷黴菌分離株生長和酵素活性影響 318
表5-10. 耐高溫溶磷微生物分離株之碳源利用多樣性功能計分評量 319
表5-11 耐高溫溶磷細菌分離株蛋白質和脂質分解酵素偵測 321
表5-12. 耐高溫溶磷放線菌分離株蛋白質和脂質分解酵素偵測 323
表5-13. 耐高溫溶磷黴菌分離株蛋白質和脂質分解酵素偵測 323
表5-14. 耐高溫溶磷細菌分離株固氮活性測試 324
表5-15. 耐高溫溶磷放線菌分離株固氮活性測試 326
表5-16. 耐高溫溶磷黴菌分離株固氮活性測試 326
表5-17. 耐高溫溶磷細菌分離株抗菌活性測試 327
表5-18. 耐高溫溶磷放線菌分離株抗菌活性測試 329
表5-19. 耐高溫溶磷黴菌分離株抗菌活性測試 329
表5-20. 耐高溫溶磷微生物的功能多樣性之功能計分評量 330
表5-21. 較多功能活性之耐高溫溶磷微生物 334
表5-22. 具高溶三磷化鈣耐溶磷微生物分離株之型態觀察 335
表6-1. 生物肥料製備供試耐高溫溶磷微生物菌株 371
表6-2. 禽畜糞生物肥料A原料基質重量 371
表6-3. 禽畜糞生物肥料B原料基質重量 372
表6-4. 稻草豬糞生物肥料原料組成 372
表6-5.以API ZYM試紙試驗測試耐高溫溶磷細菌供試菌株耐高溫酵素活性 373
表6-6. 禽畜糞生物肥料A堆積過程顆粒顏色氣味飛蟲變化 374
表6-7. 禽畜糞生物肥料B堆積過程顏色氣味變化 375
表6-8. 豬糞稻草生物肥料堆積過程顏色氣味變化 376
表7-1. 生物肥料B原料組成 411
表7-2. 生物肥料B堆積過程中性質變化 412
表7-3. 生物肥料B成品濕重和乾重重量損失比率 414
表7-4. 生物肥料B堆積過程中微生物菌相變化 415
表7-5. 生物肥料B堆積第35至56天之中溫放線菌和黴菌菌相變化 418
表7-6. 生物肥料B成品磷含量和溶磷效率 420

圖目錄
圖6-1. 禽畜糞生物肥料A堆肥溫度 377
圖6-2. 禽畜糞生物肥料B堆肥溫度 378
圖6-3. 豬糞稻草生物肥料堆肥溫度 379
圖6-4. 禽畜糞生物肥料A性質分析 380
圖6-5. 禽畜糞生物肥料B性質分析 381
圖6-6. 豬糞稻草生物肥料性質分析 382
圖6-7. 禽畜糞生物肥料A磷變化 383
圖6-8. 禽畜糞生物肥料B磷變化 384
圖6-9. 豬糞稻草生物肥料磷變化 385
圖6-10. 禽畜糞生物肥料A微生物相 386
圖6-11. 禽畜糞生物肥料A微生物比例 387
圖6-12. 禽畜糞生物肥料B微生物相 388
圖6-13. 禽畜糞生物肥料B放線菌和黴菌相 389
圖6-14. 禽畜糞生物肥料B微生物比例 390
圖6-15. 禽畜糞生物肥料B放線菌和黴菌比例 381
圖6-16. 豬糞稻草微生物肥料微生物相 392
圖6-17. 豬糞稻草生物肥料放線菌和黴菌相 393
圖6-18. 豬糞稻草生物肥料微生物比例 394
圖6-19. 豬糞稻草生物肥料放線菌和黴菌比例 395
古德業、黃伯恩。(1994)。生物肥料在永續農業上應用及展望。微生物肥料之開發與利用研討會專刊。台灣省農業試驗所特刊,44:1-4,嘉義,台灣。
林良平。(1987)。土壤微生物學。南山堂出版社,台北市,台灣。
林財旺。1998。優良禽畜糞堆肥製作。台灣省畜產試驗所四十週年所慶畜牧經營及廢棄物處理研討會論文專輯,台灣省畜產試驗所編印,台南,台灣,pp. 23-32。
吳正宗。(2005)。認識化學肥料。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 24-62,台南,台灣,。
翁震炘。(1993)。台灣地區豬糞尿處理與利用,29:64-74台灣農業。
翁震炘。(1998)。禽畜糞堆肥處理技術與獸醫公共衛生之探討。國立中興大學獸醫學研究所碩士論文,台中,台灣。
陳仁炫。(2005)。有機質肥料品質及施肥。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 75-93,台南,台灣。
陳育信。(1998)。禽畜糞堆肥處理技術輔導手冊。台灣省畜牧廢棄資源再生利用協會,南投,台灣。
陳國樹。(1998)。高溫菌在生物肥料製作上應用與其抗菌活性之探討。國立台灣大學農業化學研究所博士論文,台北,臺灣。
張政雄、楊盛行。(2001)。培養基對高溫溶磷菌活性之影響。第四屆畜牧資源回收再利用研討會論文集,台灣省畜牧獸醫學會,台中,台灣,pp. 73-83。
張政雄、陳顗竹、楊盛行。(2002)。基質種類、堆積時間及深度對溶磷菌相之影響。第五屆畜牧資源回收再利用研討會論文集,台灣省畜牧獸醫學會,台中,台灣,pp. 13-33。 
張鳳屏、楊秋忠。(1991)。磷肥及溶磷細菌對茶樹磷素吸收與茶葉品質的研究。土壤與環境,2:35-44。
楊秋忠。(2005)。生物肥料簡介。肥料特性及合理化施肥。台南區農業改良場技術專刊,94-3 (132): 94-99,台南,台灣。
楊秋忠、張芝賢、陳立夫、趙震慶。(1998)。台灣土生固氮溶磷細菌特性之研究。中國農業化學會誌,36:201-210。
楊盛行。(1994)。堆肥過程中微生物相變化及高溫放線菌之分離及應用。土壤肥料試驗報告。台灣省畜產試驗所編印,台南,台灣,pp. 338-357。
楊盛行。(1999)。溫室氣體通量測定及減量對策。國立台灣大學農業化學系及全球變遷中心,台北,臺灣,pp. 220。
楊盛行。(2000)。溫室氣體通量測定及減量對策(Ⅱ)。國立台灣大學農業化學系、全球變遷中心及農業陳列館,台北,臺灣,pp. 233。
楊盛行、張淑貞、魏嘉碧。(2000)。農家禽畜廢棄物堆肥化之性質。中華生質能源學會會誌,19 : 49-61。
楊盛行。(2001)。溫室氣體通量測定及減量對策(Ⅲ)。國立台灣大學全球變遷中心、農業化學系及農業陳列館,台北,臺灣,pp. 239。
楊盛行、楊秀婷、陳薇如、魏嘉碧。(2001)。台灣北部農家禽畜廢棄物堆肥化調查分析研究。中華民國環境保護學會會誌,24:8-25。
劉瑞美、楊秋忠。(2002)。接種溶磷根瘤菌對作物生長與養份吸收之影響。土壤與環境,5:153-164。
Abou-Shanab. R A., Ghozlan. H., Ghanem. K. and Moawad. H. (2005). Behavior of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World Journal of Microbiology and Biotechnology, 21 (6-7):1095-1101.
Ahn, J. H., Grun, I. U. and Mustapha, A. (2004). Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. Journal of Food Protection, 67 (1): 148-155.
Alagawadi, A. R. and Gaur, A. C. (1988). Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant and Soil, 105: 241-246.
Albiach, R., Cannet, R., Pomares, F. and Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the organic amendments to a horticultural soil. Bioresource Technology, 75: 43-48.
Abosi, A. O. and Raseroka, B. H. (2003). In vivo antimalarial activity of
Vernonia amygdalina. British Journal of Biomedical Science, 60 (2): 89-91.
Alexander, M. (1977). Introduction to Soil Microbiology, 2nd ed. John Wiley and Sons, New York, pp. 333-339.
Alikhani, H. A., Saleh-Rastin, N. and Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, 287: 35-41.
Amusan, O. O. G. (1996). Antimalarial active principles of Spathodea campanulata
stem bark. Phytotherapy Research, 10 (8): 692-693.
Anandham, R., Choi, K. H., Gandhi, P. I., Yim, W. J., Park, S. J., Kim, K. A., Madhaiyan, M. and Sa, T. M. (2007). Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formation. World Journal of Microbiology and Biotechnology, 23: 1121-1129.
Anastassiadis S., Wandrey C. and Rehm, H. J. (2005). Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio. World Journal of Microbiology and Biotechnology, 21 (5): 695-705.
Anderson, G. (1980). Assessing organic phosphorus in soil. In: Khasawnel, F. E., Sample, E. C. and Kamprath, E. J. (Eds), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin, pp. 411-432.
Aquilanti, L., Favilli, F. and Clementi, F. (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry, 36: 1475-1483.
Arora, D. and Gaur, C. (1979). Microbial solubilization of different inorganic phosphate. Indian Journal of Experimental Biology, 17: 1258-1261.
Arun, A. B. and Sridhar, K. R. (2005). Growth tolerance of Rhizobia isolated from sand dune legumes of the southwest coast of India. Engineering in Life Sciences, 5 (2): 134-138.
Asea, P. E. A., Kucey, R. M. N. and Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biocehmisrty, 20: 459-464.
Babu-Khan, S., Yeo, T. C., Martin, W. L., Duron, M. R., Rogers, R. D. and Goldstein, A, H. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonnas cepacia. Applied and Environmental Microbiology, 61(3): 927-978.
Bajpia, P. D. and Sundare, R. (1971a). Phosphate solubilizing bacteria. Part Ⅰ. Solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3): 972-978.
Bajpai, P. D. and Sundare, R. (1971b). Phosphate solubilizing bacteria. Part. III. Soil inoculated with phosphate solubilizing bacteria. Soil Science and Plant Nutrition, 17: 46-53.
Bandyopadhyay, U., Biswas, K., Sengupta, A., Moitra, P., Dutta, P., Sarkar, D., Debnath, P., Ganguly, C. K. and Banerjee, R. K. (2004). Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Science, 75 (24): 2867-2878.
Banik, S. and Dey, B. K. (1981). Phosphate-solubilizing microorganisms of a lateritic soil. I. Solubilization of inorganic phosphates and production of organic acids by microorganisms, isolated in sucrose calcium phosphate agar plates. Zentrlbl Bakteriologie, 136: 478-486.
Banik, S. and Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubibizing microorganisms. Plant and Soil, 69: 353-364.
Banfield, J., Barker, W., Welch, S. and Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Science (USA), 96: 3404-3411.
Barnett, G. M. (1994a). Phosphorous forms in animal manure. Bioresource Technology, 19: 139-148.
Barnett, G. M. (1994b). Manure P fractionation. Bioresource Technology, 19: 149-155.
Barroso, C. B. and Nahas, E. (2005). The status of soil phosphate fractions and the ability of fungi to dissolve hardly insoluble phosphates. Applied Soil Ecology, 29: 73-83.
Baya, A. M., Boethling, R. S. and Ramos-cormenzana, A. (1981). Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biology and Biochemistry, 13: 527-531.
Berger, I., Barrientos, A. C., Caceres, A., Hernandez, M., Rastrelli, L., Passreiter, C. M. and Kubelka, W. (1998). Plants used in Guatemala for the treatment of protozoal infections-II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi. Journal of Ethnopharmacology, 62 (2): 107-115.
Biegert, C., Wagner, L., Ludtke, R., Kotter, L., Lohmuller, C., Gunaydin, I., Taxis, K. and Heide, L. (2004). Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. Journal of Rheumatology, 31 (11): 2121-2130.
Biswas, D. R. and Narayanasamy. G. (2006). Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresource Technology, 97: 2243-2251.
Beever, R. E. and Burns, D. J. W. (1980). Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research, 8: 127-219.
Blazso, G., Gabor, M., Schonlau, F. and Rohdewald, P. (2004). Pycnogenol (R) accelerates wound healing and reduces scar formation. Phytotherapy Research, 18 (7): 579-581.
Bolan, N. S., Naidu, R., Mahimairaja., S. and Baskaran. S. (1994). Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils, 18: 311-319.
Brady, N. C. and Weil, R. R. (2002). The Nature and Properties of Soils, 13th ed. Macmillan, New York.
Brams, W. H. and McLaren. A. D. (1974). Phosphatase reactions in a column of soil. Soil Biology and Biochemistry, 6: 183-189.
Chang, C. H., Hsieh C. Y. and Yang, S. S. (2001). Effect of culture media on the phosphate-solubilizing activity of thermo-tolerant Microbes. Journal of the Biomass Energy Society of China, 20: 79-90.
Chang, C. H. and Yang, S. S. (2006). Addition of polyelectrolyte oxygen detoxifier in poultry and livestock wastes compost accelerating its maturity and maintaining population of thermo-tolerant microbes during composting. Proceedings of 6th Cross Srait Conference on Soil Science and Fertilizer, 2: 677-692.
Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. and Young C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34: 33-41.
Chen, Z., Shengwu, M. and Liu, L. (2008). Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresource Technology, 99: 6702-6707.
Chhonkar, P. K. and Subba Rao, N. S. (1967). Phosphate solubilization by fungi associated with legume root nodules. Canadian Journal of Microbiology, 13: 749-753.
Chikae, M., Ikeda, R., Kerman, K., Morita, Y. and Tamiya, E. (2006). Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis. Bioresource Technology, 97: 1979-1985.
Chin, H. S., Huang, C. C., Chen, K. S. and Yang, S. S. (1999). Cellulase activity of thermophilic actinomycetes and their effect on the quality of rice straw compost. Journal of the Agricultural Association of China New Series, 185: 58-71.
Chiu, R. Y. (1995). Parameters of compost maturity with degree of humification and geosmin production. Doctor Thesis, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, pp. 157.
Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H. and Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37:1970-1974.
Coello, P. (2002). Purification and characterization of secreted acid phosphatase in phosphorus-deficient Arabidopsis thaliana. Physiologia Plantarum, 116: 293-298.
Connel, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199: 301-305.
Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. and Korber, G. J. (1994). Biofilms, the customized microniche. Journal of Bacteriology, 176: 2137-2142.
Council of Agriculture, 2007. Annual Report of Taiwan Agriculture-2006. Council of Agriculture, Executive Yuan, Taipei, Taiwan.
Cunningham, J. E. and Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and Environmental Microbiology, 58: 1451-1458.
Dalal, R. C. (1977). Soil organic phosphorus. Advance Agronomy, 29:83-117.
Dalal, R. C. (1982). Effect of plant growth and addition of plant residues on the phosphatase activity in soil. Plant and Soil, 66: 265-269.
Datta, M., Banik, S. and Gupta. R. K. (1982). Studies on the efficacy of a phytohormomne producing phosphate solubilizing Bacillus ftrmus in augmenting paddy yield in acid of Nagaland. Plant and Soil, 69: 356-373.
De Cesare, F., Garzillo, A. M. V., Buonocore, V. and Badalucco, L. (2000). Use of sonication for measuring acid phosphatase activity in soil. Soil Biology and Biochemistry, 32: 825-832.
Del Campillo, M. C., Van der Zee, S. E. A. T. M. and Torrent, J. (1999). Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science, 50: 391-399.
DeLong, E. (1992). Archeae in coastal marine envinroments. Proceedings of the National Academy of Sciences of the United States of America, 89: 5685-5689.
Delvasto, P., Valverde, A., Ballester, A., Igual, J. M., Muñoz, J. A., González, F., Blázquez M. L. and García. C. (2006). Characterization of brushit as re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biology and Biochemistry, 38: 2645-2654.
Di Simine, C. D., Sayer, J. A. and Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28: 87-94.
Donzelli. B. G. G., Siebert. K. J. and Harman, G. E. (2005). Response surface modeling of factors influencing the production of chitinolytic and β-1,3-glucanolytic enzymes in Trichoderma atroviride strain P1. Enzyme and Microbial Technology, 37:82-92.
Duff, R. B., Webley, D. M. and Scott, R. O. (1963). Solubilization of minerals and related materials by 2-ketoglucomc acid producing bacteria. Soil Science, 95: 105-114.
Dissing, N. L. (1980). Investigation of the relationship between P-fertility, phosphatase activity and ATP content in soil. Plant and Soil, 7: 95-103.
Ekinci, K., Keener, H. M., Elwell, D. L. and Michel, F. C. (2004). Effects of aeration
strategies on the composting process: Part I. Experimental studies. Transactions of the Asae, 47 (5): 1697-1708.
Elorrieta, M. A., López, M. J., Suárez-Estrella, F., Vargas-García, M. C. and Moreno, J. (2002). Composting of different horticultural wastes: effect of fungal inoculation. In: Inserm, H., Riddech, N. and Klammer, S. (Eds.), Microbiology of Composting. Springer, Heidelberg. pp. 119-132.
El-Tarabily, K. A., Nassar, A. H. and Sivasithamparam, K. (2008). Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Applied Soil Ecology, 39: 161-171.
Espindola, L. S., Vasconcelos, J. R. E., de Mesquita, M. L., Marquie, P., de Paula, J. E., Mambu, L. and Santana, J. M. (2004). Trypanocidal activity of a new diterpene from Casearia sylvestris var. lingua. Plantamedica, 70 (11): 1093-1095.
Fageria, N. K. and Baligar, V. C. (2001). Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Communications in Soil Science and Plant Analysis, 32: 1303-1319.
Fasim, F., Ahmed, N., Parsons, R. and Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213:1-6.
Fomina, M., Hillier, S., Charnok, J., Melville, K., Alexander, I. and Gadd, G. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Applied and Environmental Microbiology, 71: 371-381.
Fox, T. R., Comerford, N. B. and McFee. W. W. (1990). Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal, 4: 1763-1767.
Franzluebbers, A. J., Stuedemann, J. A. and Wilkinson, S. R. (2002). Bermudagrass management in the southern piedmont USA. II. soil phosphorus. Soil Science Society of America Journal, 66: 291-298.
Frimmel, F. H. and Christman, R. F. (1988). Humic Substances and Their Role in the Environment. John Wiley and Sons, A Wiley-Interscience Publication, New York. pp. 271.
Fu, C. M. and Chen, S. Y. (1990). Characteristics and utilization of excess sludge compost on the pig farm. Journal of the Biomass Energy Society of China, 9: 137-143.
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41: 47-92.
Gaind, S. and Gaur, A. C. (2002). Impact of fly ash and phosphate solubilizing bacteria on soybean productivity. Bioresource Technology, 85: 313-315.
Gaind, S., Pandey A. G. and Lata. (2006). Microbial biomass, P-nutrition, and emzymatic activities of wheat soil in response to phosphorus enriched organic and inorganic manures. Journal of Environmental Science and Health Part B, 41:177-187.
Galar, M. L. and Boiardi, J. L. (1995). Evidence for a membrane-bound pyrroloquinoline quinone–linked glucose dehydrogenase in Acetobacter diazotrophicus. Applied Microbiology and Biotechnology, 43: 713-716.
Gellatly, K. S., Moorehead, G. B. G., Duff, S. M. G., Lefebvre, D. D. and Plaxton, W. C. (1994). Purification and characterization of potato tuber acid phosphatase having significant phosphotyrosine activtiy. Physiologia Plantarum, 106: 223-232.
Gerretsen, F. C. (1948). The influence of microorganisms on the phosphate intake by the plant. Plant and Soil, 1: 51-81.
Gibson, B. R. and Mitchell, D. T. (2004). Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi. Mycological Research, 108(8): 947-954.
Goldstein, A. H. (1986). Bacterial solubilization of mineral phosphate: historical perspective and future prospects. American Journal of Alternative Agriculture, 1: 57-57.
Goldstein, A. H. and Liu, S. T. (1987). Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechology, 5: 72-74.
Goldstein, A. H. (1991). Plant cells selected for resistance to phosphate starvation show enhanced P use efficiency. Theoretical and Applied Genetics, 82(2): 191-194.
Goldstein, A. H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture and Horticulture, 12: 185-193.
Goldstein, A. H., Baertlein, D. A. and McDaniel, R. G. (1988). Phosphate starvation inducible metabolism in Lycopersicon esculentum: I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiology, 87, 711-715.
Goldstein, A. H., Braverman, K. and Osorio, N. (1999). Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology, 30(4): 295-300.
Goodfellow, M., Lacey, J. and Todd, C. (1987). Numerical classification of thermophilic Streptomycetes. Journal of General Microbiology, 133: 3135-3149.
Goosen, N., Horsman, H. P., Huinen, R. G. and van de Putte, P. (1989). Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrroloquinoline quinone: nucleotide sequence and expression in Escherichia coli K-12. Journal of Bacteriology, 171: 447-455.
Gray, K. R., Sherman, K. and Biddlestone, A. J. (1971). A review of composting. Part 1. Process Biochemistry, 6: 32-36.
Grimm, T., Schafer, A. and Hogger, P. (2004). Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radical Biology and Medicine, 36 (6): 811-822.
Gupta, R., Singal, R., Shankar, A., Kuhad, R. C. and Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. Journal of General and Applied Microbiology, 40: 255-260.
Hamdali, H., Bouizgarne, B., Hafidi, M., Lebrihi, A., Virolle, M. J. and Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 38: 12-19.
Halder, A. K., Mishra, A. K., Bhattacharyya, P. and Chakrabartty, P. K. (1990). Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. Journal of General and Applied Microbiology, 36: 81-92.
Harada, N. H., Takagi, K., Harazono, A., Fujii, K. and Iwasaki, A. (2006). Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biology and Biochemistry, 38: 173-179.
Harada, Y., Haga, K., Osada, T. and Koshino, M. (1991). Quality aspects of animal waste compost. In: Proceedings of the Symposium on Pig Waste Treatment and Composting II. Taiwan Livestock Research Institute, Tainan, Taiwan. pp. 54-76.
Harley, J. L. and Smith, S. E. (1983). Mycorrhizal Symbiosis. Academic Press, New York.
Harley, A. K. and Chakrabartty, P. K. (1993). Solubilization of inorganic phosphate by Rhizobium. Folia Microbiology, 38: 325-330.
Hayes, M. H. B., MacCarthy, P., Malcolm, R. L. and Swift, R. S. (1989). Humic Substances II, in Search of Structure. John Wiley and Sons, A Wiley-Interscience Publication, New York. pp. 764.
Hilda, R. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
Hilda, R., Gonzalez, T. and Selman, G. (2000). Expression of a mineral phosphate solubilizing gene from Erwina herbicola in two rhizobacterial strains. Journal of Biotechnology, 84: 155-161.
Huang, C. M., Chen, W. C., Sheen, H. K., Chang S. J., Lee, S. W. and Wang, L. H. (1994). Mass production of bagasse compost in an economic way. In: Proceedings of Symposium on Technology and Utilization of Composting. II. The Biomass Energy Society of China, Taipei, Taiwan. pp. 122-130.
Huang, S. N. (1991). Application of hog compost in crop production. In: Proceedings of the Seminar on Hog Waste Treatment, Compost Preparation, Utilization and Management. The Biomass Energy Society of China, Taipei, Taiwan. pp. 1-17.
Hegde, U., Chang, T. C. and Yang, S. S. (2003). Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere, 52: 1275-1285.
Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Suh, J. S. and Kim, K. Y. (2003). 2-Ketogluconic acid production and phosphate solubilization by Enterobater intermedium. Current Microbiology, 47: 87-92.
Isbelia, R., Bernier, R., Simard, R., Tanguay, P. and Antoun, H. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbial Ecology, 28: 291-295.
Illmer, P. and Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24: 389-395.
Illmer, P. and Schinner, F. (1995). Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry, 27: 257-263.
Illmer, P., Barbato, A. and Schinner, F. (1995). Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry, 27: 265-270.
Jiang, C. Y., Sheng, X. F., Qian, M. and Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72: 157-164.
Johri, J. K., Surange, S. and Nautiyal, C. S. (1999). Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39: 89-93.
Jones, D. L. and Darrah, P. R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 166: 247-257.
Juang, T. C. (1987). Lecture of Soil Chemistry. Publication Division Office of National Chung-Hsing University Academic Affairs, Taichung. Taiwan, pp. 79-107.
Jurinak, J. J., Dudley, L. M., Allen, M. F. and Knight, W. G. (1986). The role of calcium oxalates in the availability in soils of semiarid regions a thermodynamic study. Soil Science, 142: 255-261.
Kam, T. S., Pang, H. S., Choo, Y. M. and K. Komiyama, K. (2004). Biologically active ibogan and vallesamine derivatives from Tabernaemontana divaricata. Chemistry and Biodiversity, 1 (4): 646-656.
Karonen, M., Loponen, J., Ossipov, V. and Pihlaja, K. (2004). Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Analytica Chimicaacta, 522 (1): 105-112.
Katznelson, H. and Bose, B. (1959). Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots and non- rhizosphere soil. Canadian Journal of Microbiology, 5: 79-85.
Khairnar, N. P., Misra, H. S. and Apte, S. K. (2003). Pyrroloquinoline-quinone synthesized in Escherichia coli by Pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochemical and Biophysical Research Communications, 312: 303-308.
Kim, K. Y., McDonald, G. A. and Jordan, D. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 24: 347-352.
Kim, K. Y., Jordan, D. and Mcdonald, G. A. (1998a). Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, 30: 995-1003.
Kim, K. Y., Jordan D. and Krishnan, H. B. (1998b). Expression of gene from
Rahanella aquatilis that are necessary for mineral phosphate solubilization in
Escherichia coli. FEMS Microbiology Letters, 159: 121-127.
Kim, C. H., Han, S. H., Kim, K. Y., Cho, B. H., Kim, Y. H., Koo, B. S. and Kim, Y. C. (2003). Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Current Microbiology, 47: 457-461.
Kim, Y. J., Chung, J. E., Kurisawa, M., Uyama, H. and Kobayashi, S. (2004). Superoxide anion scavenging and xanthine oxidase inhibition of (+)-catechin-aldehyde polycondensates. Amplification of the antioxidant property of (+)-catechin by polycondensation with aldehydes. Biomacromolecules, 5 (2): 547-552.
Kittur, F. S., Kumar, A. B. V., Varadaraj, M. C. and Tharanathan, R. N. (2005). Chitooligosaccharides-preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydrate Research, 340:1239-1245.
Kohama, T., Suzuki, N., Ohno, S. and Inoue, M. (2004). Analgesic efficacy of French maritime pine bark extract in dysmenorrhea-An open clinical trial. Journal of Reproductive Medicine, 49 (10): 828-832.
Kpomblekou, A. K. and Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rock. Soil Science, 158: 442-453.
Krieg, N. R. and Döbereiner, J. (1984). Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore/London, 2: 1104-1138.
Krishnary, P. U. and Goldstein, A. H. (2001). Cloning of a Serratia marcescens DNA
fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase. FEMS Microbiolgy Letters, 205: 215-220.
Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soil. Canadian Journal of Soil Sciences, 63: 671-678.
Kucey, R. M. N. (1987). Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 35: 661-667.
Kucey, R. M. N. (1988). Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Canadian Journal of Soil Sciences, 68: 61-270.
Kucey, R. M. N., Janzen, H. H. and Leggett, M. B. (1989). Microbial mediated increase in plant-availability phosphorus. Advances in Agronomy, 42: 199-228.
Kundu, B. S. and Gaur, A. C. (1980). Establishment of nitrogen-fixing and phosphate-solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and Soil, 57: 223-230.
Kupper, K. C., Bettiol, W., de Goes, A., Souza, P. S. and Bellotte, J. A. M. (2006). Biofertilizer for control of Guignardia citricarpa, the causal agent of citrus black spot. Crop Protection, 25: 569-573.
Kusudo, T., Sasaki, T. and Inouye, K. (2003). Purification and characterization of purple acid phosphates PAPI from dry power of sweet potato. Bioscience, Biotechnology and Biochemistry, 67: 1609-1611.
Ladd, J. N., Amato, M. and Van veen, H. A. (2004). Soil microbial biomass, its assay and role in turnover of organic matter C and N. Soil Biology and Biochemistry, 36: 1369-1372.
Laheurte, F. and Barthelin, J. (1998). Effect of phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil, 105: 11-17.
Lal, R. (1998). Soil quality and agriculture sustainability. In: Lal, R. (Ed), Soil Quality and Agricultural Sustainability. Lewis Publishers, Boca Raton, Florida, pp. 3-13.
Lee, C. C. (1999). Organic waste treatment and sustainable agriculture. In: Huang, S. F., Lu, H. S. and Chu, C. (Eds), Treatment and Application of Agricultural Organic Wastes. The Biomass Energy Society of China, Taipei, Taiwan, pp. 1-7.
Lessie, T. G., Berka, T. and Zamanigian, T. S. (1984). Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation. Journal of Bacteriology, 139: 323-325.
Leyval, C. and Berthelin, J. (1989). Interaction between Agrobacterium radiobacter and beech root:Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant and Soil, 117: 103-110.
Li, M., Osaki, M., Rao, I. M. and Tadano, T. (1997). Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Plant and Soil, 195: 161-169.
Lin, J. K. (1994). Effect of hog waste compost on the soil mciroflora and activity in different environmental conditions. In: Final Report of Soil and Fertilizer Reseach 1994. Department of Agriculture and Forest, Taiwan Provincial Government, Nan-Tou, Taiwan.
Lin, T. F., Huang, H. I., Shen, F. T. and Young, C. C. (2006). The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology, 97: 957-960.
Liu, S. T., Lee, L. Y., Tai, C. Y., Hung, C. H., Chang, S. Y., Wolfram, Y. H., Pogers, R. and Goldstein, A. H. (1992). Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology, 174(18): 5814-5819.
Liu, X. M., Wei, J. P., Tan, F. S., Zhou, S. M., Wurthwein, G. and Rohdewald, P. (2004). Antidiabetic effect of Pycnogenol(R) French maritime pine bark extract in patients with diabetes type II. Life Science, 75 (21): 2505-2513.
Loganathan, P. and Nair, S. (2003). Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnology Letters, 25: 497-501.
Louw, H. A. and Webley, D. M. (1958). A plate method for estimating the numbers of phosphate-dissolving and acid-producing bacteria in soil. Nature, 182 :1317-1318.
Louw, H. A. and Webley, D. M. (1959). A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. Journal of Applied Bacteriology, 22: 227-233.
Manndels, M., Mrdeiro, J. E., Andreotii, R. E. and Bisset, F. H. (1981). Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions. Biotechnology and Bioengineering, 23:2009-2026.
Mehta, S. and Nautiyal, C. S. (2001). An efficient method of qualitative screening of phosohate-solubilizing bacteria. Current Microbiology, 43: 51-56.
Meulenberg, J. J., Sellink, E., Riegman, N. H. and Postma, P. W. (1992). Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Molecular and General Genetics, 232(2): 284-294.
Mittal, V., Singh, O., Nayyar, H., Kaur, J. and Tewari, R. (2008). Stimulatory effect
of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium
citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40: 718-727.
Moghimi, A., Tate, M. E. and Oades, J. M. (1978). Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biology and Biochemistry, 10: 283-287.
Molla, M. A. Z., Chowdhury, A. A., Islam, A. and Hoque, S. (1984). Microbial mineralization of organic phosphate in soil. Plant and Soil, 78: 393-399.
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
Nahas, E. and Barroso, C. B. (2005). The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, 29: 73-83.
Narsian, V. and Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32: 559-565.
Nautiyal, C. S. (1997). A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Current Microbiology, 34: 12-17.
Nautyal, C. S. (1999). An efficient microbiological medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170: 265-270.
Nautiyal, C. S., Bhadauria, S., Kumar, P., Lai, H., Mondal, R. and Verma, D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters, 182: 265-270.
Nelson, D. W. and Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: Page, A. L. (Ed.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed. The American Society of Agronomy, Wisconsin, pp. 539-580.
Nurmi, J. and Hillebrand, K. (2007). The characteristics of whole-tree fuel stocks from silvicultural cleaning and thinnings. Biomass and Bioenergy, 31: 381-392.
Olsen, S. R. and Khasawneh, F. E. (1980). Use and limitations of physical-chemical criteria for assessing the status phosphorus in soil. In: Khasawneh, F. E., Sample, E. C. and Kamprathed, E. J. (Eds.), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin, pp. 361-410.
Olsen, S. R., Sommers, L. E. (1982). Phosphorus. In: Page, A. L., Miller, R. H., Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 2, Chemical and Microbial Properties, 2nd ed. American Society of Agronomy, Madison, Wisconsin, pp. 403-430.
Omar, S. A. (1998). The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14: 211-218.
Olajide, O. A., Aderogba, M. A., Adedapo, A. D. A. and Makinde, J. M. (2004). Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. Journal of Ethnopharmacology, 95(2-3): 139-142.
Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Garneiro, N. P., Guimarães, C. T., Schaffert, R. E. and Sã, N. M. H. (2008). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrano Biome. Soil Biology and Biochemistry, 30: 1-6.
Ohta, Y. and Ikeda, M. (1978). Deodorization of pig feces by actinomycetes. Applied and Environmental Microbiology, 36: 487-491.
Ouahmane, L., Thioulouse, J., Hafidi, M., Prin, Y., Ducousso, M., Galiana, A., Plenchette, C., Kisa, M. and Duponnois, R. (2007). Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. Forest Ecology and Management, 241: 200-208.
Pai, C. R., Wu, C. F., Sun, R. Y., Wei, C. B. and Yang, S. S. (2003). Composition analysis of livestock and poultry wastes during composting. Journal of the Biomass Energy Society of China, 22: 57-71.
Parr, J. F. and Hornick, S. B. (1992). Utilization of municipal wastes. In: Metting, F. B. (Ed.), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, pp. 545-559.
Parr, J. F., Hornick, S. B. and Kanfman, D. D. (1994). Use of microbial inoculants and organic fertilizers in agricultural production. In: International Seminar on the Use of Microbial and Organic Fertilizers in Agricultural Production. Rural Development Administration of Republic of Korea and Food and Fertilizer Techonology Center, Suwon, Korea, pp. 1-40.
Paul, E. A. and Clark, F. E. (1988). Soil Microbiology and Biochemistry. Academic Press, San Diego, CA.
Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceeding of National Academy of Science (USA), 85:2444-2448.
Reyes, I., Bernier, L. and Antoun, H. (2002). Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology, 44: 39-48.
Richardson, A. E. (1994). Soil microorganisms and phosphorus availability. In: Pankhurst, C. E., Doube, B. M., Gupts, V. V. S. R. and Grace, P. R. (Eds.), Soil Biota, Management in Sustainable Farming Systems. CSIRP Australia, Victoria, pp. 50-62.
Piccini, D. and Azcon. R. (1987). Effect of phosphate-solubilizing bacteria and vescular-arbuscular mycorrhiza fungi on the utilization of Bayovar rock phosphate by alfafa plants using a sand-vermiculate medium. Plant and Soil, 101: 45-50.
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the
vial activity of some microbial species. Mikrobiology, 17: 362-370.
Raj, J., Bagyaraj, D. J. and Manjunath, A. (1981). Influence of soil inoculation with vescular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and P-uptake. Soil Biology and Biochemistry, 13: 105-108.
Ralston, D. B. and Mcbride. R. P. (1976). Interaction of mineral phosphate-dissolving microbes with red pine seedlings. Plant and Soil, 45: 493-507.
Reddy, M. S., Kumar, S., Babita, K. and Reddy, M. S. (2002). Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technology, 84: 187-189.
Reyes, I., Bernier, L., Simard, R. R., Tanguay, P. and Antoun, H. (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 28: 291-295.
Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. and Martínez-Molina, E. (2001). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis, 22: 1086–1089.
Rodríguez, H. and Reynaldo, F. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
Rodríguez, H., Gonzalez, T. and Selman, G. (2000). Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal of Biotechology, 84: 155-161.
Rosenburg, S. L. (1975). Temperature and pH optimum for 21 species of thermophilic and thermotolerant fungi. Canadian Journal of Microbiology, 21: 1535-1540.
Ross, D. J. K., Tate, R., Cairus, A., Mayricbt, K. F. and Pursie, E. A. (1982). Restoration of Pasteur after topsoil removal: effect of soil carbon and nitrogen mineralization, microbial biomass and enzyme activities. Soil Biology and Biochemistry, 14: 575-583.
Rudresh, D. L., Shivaprakash, M. K. and Prasad, R. D. (2005a). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Tichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer arietinu L.). Applied Soil Ecology, 28: 139-146.
Rudresh, D. L., Shivaprakash, M. K. and Prasad, R. D. (2005b). Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology, 51:217-222.
Sambrook, J., Fritsch, E. E. and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, New York.
Sarathchandra, S. U., Lee, A., Perritt, K. W., Rajan, S. S. S. and Oliver, E. H. A. (1993). Effect of phosphate fertilizer applications in microorganisms in pastoral soils. Australian Journal of Soli Research, 31: 299-309.
Sayer, J. A. and Gadd, G. M. (2001). Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 105(10): 1261-1267.
Sayer, J. A, Kierans, M. and Gadd, G. M. (1997). Solubilisation of some naturally occurring metal-bearing minerals, limescalc and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154: 29-35.
Saber, M. S. M., Yousry, M. and Kabesh, M. (1977). Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants. Plant and Soil, 45: 493-507.
Salva, D., Tokuioshi, K., Martins, E. D. S., Silva, R. D. and Gomes, E. (2005). Production of pectinase by soil-state fermentation with Penicillium viridicatum RFC3. Process Biochemistry, 40:2885-2889.
Sarikaki, V., Rallis, M., Tanojo, H., Panteri, I., Dotsikas, Y., Loukas, Y. L., Papaioannou, G., Demetzos, C., Weber, S., Moini, H., Maibach, H. I. and Packer, L. (2004). In vitro percutaneous absorption of pine bark extract (Pycnogenol) in human skin. Journal of Toxicology-Cutaneous and Ocular Toxicology, 23 (3): 149-158.
Shen, J., Li, R., Zhang, F., Fan, J., Tang, C. and Rengel, Z. (2004). Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research, 86: 225-238.
Shenoy, V. V. and Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23:501-513.
Shekhar Sharma, H. S. and Johri, B. N. (1992). The role of thermophilic fungi in agriculture. In: Arora, D. K., Elander, R. P. and Mukerji, K. G. (Eds), Handbook of Applied Mycology, Vol. 4, Fungal Biotechnology. Marcel Dekker Inc., New York, pp. 707-727.
Sharpley, A. and Moyer, B. (2000). Phosphorous forms in manure and compost and their release during simulated rainfall. Journal of Environmental Quality, 29: 1462-1469.
Simine, C. D., Sayer, D. J. A. and Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28: 87-94.
Solis, C., Becerra, J., Flores, C., Robledo, J. and Silva, M. (2004). Antibacterial and antifungal terpenes from Pilgerodendron uviferum (D. Don) Florin. Journal of the Chilean Chemical Society, 49(2): 157-161.
Son, H. J., Park, G. T., Cha, M. S. and Heo, M. S. (2006). Solubilizing of inorganic phosphates by salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97: 204-210.
Sparling, G. P., Ord, B. G. and Vaugham, D. (1981). Microbial biomass and activity in soil amended with glucose. Soil Biology and Biochemistry, 16: 673-674.
Sperber, J. I. (1958a). Solution of mineral phosphate by soil bacteria. Nature, 180:994-995.
Sperber, J. I. (1958a). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9: 778-781.
Sperber, J. I. (1958c). Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research, 9: 782-787.
Sperber, J. I. (1958d). Release of phosphate from soil minerals by hydrogen sulphide. Nature, 181: 934-935.
Starnes, D. L., Padmanabhan, P. and Sahi, S. V. (2008). Effect of P sources on
growth, P accumulation and activities of phytase and acid phosphatases in two
cultivars of annual ryegrass (Lolium multiflorum L.). Plant Physiology and
Biochemistry, 46: 580-589.
Strom, P. F. (1985). Identification of thermophilic bacteria in solid-waste composting. Applied and Environmetal Microbiology, 50: 906-913.
Struthers, P. H. and Seiling, G. H. (1960). Effect of organic anions on phosphate precipitation by iron and aluminum as influenced by pH. Soil Science, 69: 205-213.
Subba Rao, N. S. (1982a). Biofertilizers in agriculture. New Delhi, pp. 129-136.
Subba Rao, N. S. (1982b). Utilization of farm wastes and residues in agriculture. In: Subba Rao, N. S. (Ed.), Advances in Agricultural Microbiology. Butterworth Scientific, London, pp. 509-521.
Suh, J. S., Lee, S. K., Kim, K. S. and Seong, K. Y. (1995). Solubilization of insoluble phosphate by Peudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. Journal of Korean Society of Soil Science and Fertilizer, 28: 278-286.
Taha, S. M., Mahmoud, S. A. Z., El-Damaty, A. H. and El-Hafez, A. M. A. (1969). Activity of phosphate dissolving bacteria in Egyptian soil. Plant and Soil, 31: 149-160.
Tanaka, Y., Murata, A. and Hayashida, S. (1995). Accelerated composting of cereal shochu-distillery wastes by actinomycetes: promotive composting of shochu-distillery waster (I). Seibutsu-Kogaku Kaishi, 73: 365-372.
Tchan, Y. T. and New, P. B. (1987). Genus 1. Azotobacter Beijerinck 1907, 567.AL. In:
Krieg, N. R. and Holt, J. G. (Eds.), Bergey’s Manual of Systematic Bacteriology,
8th Ed., Vol. 1. Williams and Wilkins Co., Baltimore, pp. 220-229.
Thambirajah, J. J., Zulkali, M. D. and Hashim, M. A. (1995). Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches: effect of nitrogen supplementation on the substrates. Bioresource Technology, 52: 133-144.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins., D. G. (1997). The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuclei Acid Research, 24: 4876-4882.
Tisdale, S. L., Nelson, W. L. and Beaton, J. D. (1985). Soil Fertility and Fertilizers. Macmillan, New York, pp. 189-248.
Traina, S. J., Sposito, G., Hesterberg, D. and Kafkafi, U. (1986). Effect of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Science Society of America, 50: 45-52.
Tsai, S. H., Liu C. P. and Yang, S. S. (2007). Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renewable Energy, 32: 904-915.
Tsai, S. H., Wei, C. B. and Yang, S. S. (2002). Quality of food waste compost produced by local autonomy group in Taipei City. Journal of the Biomass Energy Society of China, 21: 103-117.
Vassilev, N. and Vassileva M. (2003). Biotechnological solubilization of rock phosphate on media containing aro-industrial wasts. Applied of Microbiology and Biotechonology, 61: 435-440.
Vinnerås, B., Björklund, A. and Jönsson, H. (2003). Thermal composting of faecal matter as treatment and possible disinfection method-laboratory-scale and pilot-scale studies. Bioresource and Technology, 88: 47-54.
Welch, S., Taunton, A. and Banfield, J. (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19: 343-367.
Wakelin, S. A., Warren, R. A., Harvey, P. R. and Ryder, M. H. (2004). Phosphate soluilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils, 40: 36-43.
Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. and Wong, M. H. (2005). Effect of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155-166.
Xiao, C. Q., Chi, R. A., Huang, X. H., Zhang, W. X., Qiu, G. Z. and Wang, D. Z. (2008). Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, 33: 197-193.
Yang, D. Q., Wang, X. M., Shen, J. and Wan, H. (2004). A rapid method for evaluating antifungal properties of various barks. Forest Products Journal, 54 (6): 37-39.
Yang, S. S. (1988). Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation. Biotechnology and Bioengineering, 32: 886-890.
Yang, S. S. (1994). Compost and agricultural production in Taiwan. Soil Fertility in Taiwan, 29-62.
Yang, S. S. (1997a). Preparation of compost and evaluating its maturity. Food and Fertilizer Technology Center Extention Bulletin, 445: 1-23.
Yang, S. S. (1997b). Preparation and characterization of compost. Journal of the Biomass Energy Society of China, 16: 47-62.
Yang, S. S. (1997c). Preparation and maturity evaluation of composts. In: International Workshop on Quality Control of Organic Fertilizer. Rural Development Administration of Republic of Korea and Food and Fertilizer Technology Center, Suwon, Korea, pp:35-70.
Yang, S. S. (2000). Recent advance in composting. In: Huang, S. F., Pan, S. Y. and Kao, C. F. (Eds), Proceedings of the International Seminar on Issues in the Management of Agricultural Resources. Food and Fertilizer Technology Center for the Asian and Pacific Region and National Taiwan University, Taipei, Taiwan, pp. 166-185.
Yang, S. S. (2003). Application of microbial fertilizers on the three objectives agriculture. In: Chou, C. H. and Yang, S. S. (Eds), Challenge of Three Objectives in Agriculture. Council of Agriculture, Southern Taiwan Joint Services Center of Executive Yuan, Institute of Biotechnology of National Pingtung University of Science and Technology, Department of Biochemical Science and Technology of National Taiwan University, Taiwan, pp. 265-292.
Yang, S. S., Chang, S. L., Wei, C. B. and Lin, H. C. (1991a). Reduction of waste production in the Kjeldahl method. Journal of the Biomass Energy Society of China, 10: 147-155.
Yang, S. S. and Chen, K. S. (2003). Application of thermophilic microbes for preparing biofertilizers. Plant Protection Bulletin Special Publication New, 5: 267-291.
Yang S. S., Fan, Y. H., Yang, C. K. and Lin. I. C. (2003a). Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere, 52: 1489-1498.
Yang, S. S., Lin, C. F. and Wang, C. K. (2003b). Wastes Treatment and Re-Utilization, 2nd ed. National Open University, Taipei, Taiwan, pp. 501.
Yang, S. S., Wei, C. B., Koo, K. and Tsai, S. S. (1991b). Food and agricultural wastes produced in Taiwan area. Journal of the Biomass Energy Society of China, 10: 70-87.
Ye, Y. F., Min, H. and Du, Y. F. (2004). Characterization of a strain of Sphigobacteriam sp. and its degradation to herbicide mefenacet. Journal of Environmental Science, 16: 343-347.
Yen, S. Y. (1994). Microbial activity during the composting of wastes. In: Proceedings of Compost Technology and Utilization. The Biomass Energy Society of China, Taipei, Taiwan, pp. 67-83.
Young, C. C. (1990). Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of the tree species in subtropical-tropical soils. Soil Science and Plant Nutrition, 36: 245-254.
Zayed, G. and Abdel-Motaal, H. (2005a). Bioactive composts from rice straw enriched with rock phosphate and their effect on phosphorus nutrition and microbial community in rhizosphere of cowpea. Bioresource Technology, 96:929-935.
Zayed, G. and Abdel-Motaal, H. (2005b). Bio-production of compost with low pH and soluble phosphorus from sugar cane bagasse enriched with rock phosphate. World Journal of Microbiology and Biotechnology, 21: 741-752.
Zhao, Y., Li, W., Zhou, Z., Wang, L., Pan, Y. and Zhao, L. (2005). Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. European Journal of Soil Biology, 41:21-29.
Zou, X., Binkley, D. and Doxtader, K. G. (1992). A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147: 243-250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top