跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永佳
研究生(外文):Yung-Chia Chen
論文名稱:腺苷與厚朴酚刺激大鼠腎上腺皮質細胞分泌皮質酮機制之探討
論文名稱(外文):Studies on the Mechanisms of Adenosine- and Magnolol-stimulated Corticosterone Production in Rat Adrenocortical Cells
指導教授:王淑美王淑美引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:解剖學暨生物細胞學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:腺苷厚朴酚固醇類生合成訊息傳遞
外文關鍵詞:adenosinemagnoloolsteroidogenesissignal transduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
內分泌系統是負責調控動物體內生理功能的重要系統之ㄧ。其中,腎上腺皮質所分泌的荷爾蒙對於動物在遭受外來壓力與疾病之抵抗力非常重要。本實驗室之前研究已發現冬蟲夏草與厚朴酚可促進大鼠腎上腺皮質固醇類生合成,但詳細的訊息機制仍不清楚。在本論文第一部分中我們使用大鼠腎上腺初級培養細胞做為研究模式,探討腺苷促進腎上腺皮質固醇類生合成的機制。我們發現,腺苷可促進腎上腺皮質酮的產量上升。反轉錄-聚合酶酵素連鎖反應的分析偵測到腎上腺皮質細胞有A1,A2A,A2B,及A3共四種腺苷接受器mRNA的表現。藥理學拮抗劑實驗結果顯示,腺苷刺激皮質酮產量上升是透過A2A 及A2B接受器。進一步再利用干擾A2AR核醣核酸 (small interfering ribonucleic acid, SiRNA) 的技術,我們可更確定腺苷刺激皮質酮分泌是透過A2AR。A2AR及A2BR的免疫螢光染色分析可發現A2AR在細胞膜上呈現連續的點狀染色;A2BR的染色只有少量分布在細胞膜上。我們進一步證實腺苷透過活化下列的訊息傳遞路徑達到促進皮質酮產量增加,包括: Janus kinase 2 (JAK2) - mitogen-activated protein kinase kinase 1/2 (MEK1/2)- extracellular signal-regulated kinase 1/2 (ERK1/2),促使細胞核內的轉錄因子cyclic AMP responsive element binding protein (CREB)磷酸化上升,最後可能導致相關的固醇類生合成酵素基因的轉錄、轉譯作用的增加,造成皮質酮產量上升。
由於腺苷刺激皮質酮增加約有1/2是透過JAK2訊息路徑。所以,我們推論還有其他的訊息路徑參與調控腺苷刺激皮質酮分泌的過程。首先,利用專一性的抗體發現腎上腺皮質細胞有protein kinase C (PKC) α,PKCβI, PKCβII, PKCε, PKCδ, PKCζ和PKCμ的表現。藥理學的研究顯示一般的PKC抑制劑calphostin c,PKCα/β/γ/μ的抑制劑Gö6976或PKCε的抑制劑εV1-2皆可以減少腺苷刺激的皮質酮產量,顯示PKCα/β/γ/μ或PKCε參與調控腺苷刺激類固醇增加的作用。在腺苷刺激五分鐘後,磷酸化(活化態)的PKCβII及PKCε表現量增加,證明腺苷也活化了PKCβ及PKCε等訊息傳遞路徑。而PKCβ或PKCε受到腺苷的活化後也會進而活化下游的MEK-ERK1/2與CREB。皮質酮的生成需要受到一系列類固醇水解酵素的作用;我們利用RT-PCR偵測到腺苷會增加CYP11B1 mRNA的表現,所以腺苷也有可能造成CYP11B1蛋白質增多甚至升高其活性來調控皮質酮的生合成,這部分未來須有更多的實驗來闡明。
第三部份研究著重在探討厚朴酚對腎上腺皮質酮分泌的訊息路徑。我們發現MEK 抑制劑PD98059、TK抑制劑genistein以及JAK2抑制劑AG490都可以完全抑制由厚朴酚誘發的皮質酮分泌。此外,厚朴酚可以在短時間內增加MEK,ERK,CREB之磷酸化。同時,決定類固醇生成速率決定步驟的32及30 kDa的固醇類急性調控蛋白;steroidogenic acute regulatory protein (StAR)蛋白之表現也隨著厚朴酚刺激的時間增加而表現增多。為了探討訊息傳遞路徑的上下游關係,我們利用抑制劑阻斷TK及JAK2的活性,發現厚朴酚所引起的MEK、ERK之磷酸化程度會下降。這個結果顯示JAK2是整個訊息路徑最上游的調控分子。而JAK2及MEK的活化很明顯的調控了CREB的磷酸化與StAR 蛋白質的表現。我們的研究結果證明厚朴酚透過一個新的訊息調控機制來影響固醇類生合成。
總結而論,以腺苷或厚朴酚當作刺激源,皆可活化一條新的訊息傳遞路徑而造成腎上腺皮質細胞皮質酮的增加;而皮質酮的上升又有助於抗發炎,所以腺苷與厚朴酚在未來有希望做為在臨床治療免疫相關疾病的輔助用藥。
Endocrine system is one of the important systems which regulate physiologic condition in animals. Adrenal cortex mediates stress response through the production of hormone. We have reported that Cordyceps sinensis and magnolol can stimulate corticosterone production in rat adrenocortical cells; however, their mechanisms are unknown. In the first part of the thesis, we investigated the effects and mechanisms of Adenosine (Ado)-stimulated steroidogenesis. Meanwhile, the adenosine receptors which are involved in Ado-stimulated corticosterone production were also determined. Expression of A1, A2A, A2B, and A3 adenosine receptor (AR) mRNA in rat adrenal cells was shown by reverse transcription- polymerase chain reaction. Ado increased corticosterone production in a time- and dose-dependent manner, and this ado effect was mediated by the A2Rs, since the antagonists specific for the A2A and A2B receptors, and specific silencing the A2AR expression with small interfering RNA significantly blocked the ado-induced steroidogenesis. Using pharmacological approaches, we further demonstrated that Janus kinase 2 (JAK2) was the downstream molecule next to the A2ARand A2BR. Inhibition of JAK2 prevented the ado-induced steroidogenesis and phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal- regulated kinase 1/2 (ERK1/2), demonstrating that JAK2 was the upstream effector of the MEK pathway. Pretreatment with A2R, JAK2, or MEK inhibitors significantly decreased the adenosine-induced phosphorylation of 3’, 5’-cyclic adenosine monophosphate responsive element binding protein (CREB). In conclusion, these data show that ado-stimulated steroidogenesis is mediated via the A2AR and A2BR, activation of which triggers the JAK2-MEK-ERK signaling pathway and CREB phosphorylation.
In the second part of the thesis, we identified the signaling pathways besides A2R -JAK2-MEK-ERK signaling pathway, which were responsible for Ado-stimulated steroidogenesis. Using pharmacological approaches, we found that the non-specific protein kinase C (PKC) inhibitor, calphostin c, inhibited the Ado-stimulated steroidogenesis. Moreover, PKCα/β/γ/μ inhibitor, Gö6976 and PKCε inhibitor εV1-2 blocked the Ado-stimulated corticosterone production, indicating that PKCα/β/γ/μ and PKCε are participated in this event. Antagonization of A2R inhibited the Ado-stimulated PKCα/βII or PKCε phosphorylation, indicating that PKC activation was downstream of A2R. Inhibition of PKC or PKCε prevented the Ado-induced phosphorylation of MEK-ERK, implying that PKCε is the upstream molecules of the MEK-ERK pathway. Ado increased the translocation of PKCα or PKCεto the membrane fraction, concomitantly with the enhanced PKCα/βII and PKCε phosphorylation. Inhibition of PKCα/β and PKCε reduced the Ado-induced of CREB phosphorylation, supporting that CREB is a downstream effector for PKCβ and PKCε. In conclusion, these data indicate that Ado-stimulated steroidogenesis might be mediated through PKCβ/ε-MEK-ERK-CREB cascade.
In the third part of the thesis, we focused on identifying the signalling mediating the effect of magnolol on corticosterone production. Magnolol-induced corticosterone production was completely inhibited by MEK-inhibitor PD98059, tyrosine kinase (TK)-inhibitor genistein or JAK2-inhibitor AG490, suggesting that ERK and JAK2 are both involved in this signaling cascade. Further, magnolol induced the transient phosphorylation of MEK, ERK, CREB and the expression of 32 and 30 kDa steroidogenic acute regulatory protein (StAR) in a time-dependent manner. Inhibition of TK or JAK2 activities blocked magnolol-induced phosphorylation of MEK and ERK, again supporting the upstream role of JAK2. The activation of JAK2 or MEK apparently mediated the magnolol-induced phosphorylation of CREB and the upregulation of StAR. These findings demonstrate a novel pathway for magnolol to induce the expression of StAR, which regulates the rate-limiting step in sterodiogenesis.
中文摘要 I
Abstract III
第一章 文獻回顧 1
第二章 研究目的及步驟 7
第三章 材料與方法 9
一、 藥品 9
二、 大鼠腎上腺皮質細胞培養 9
三、 細胞存活率分析 10
四、 凋亡與壞死細胞染色分析 10
五、 皮質酮的放射線免疫偵測法 10
六、 蛋白質電泳與西方墨點法 11
七、 細胞質與細胞膜分離萃取技術 12
八、 反轉錄-聚合酶連鎖反應 13
九、 免疫螢光染色 14
十、 統計分析 14
第四章 腺苷促進大鼠腎上腺皮質細胞固醇類生合成機制之探討—第一部分 15
第一節 結果 16
第二節 討論 19
第三節 圖及圖片說明 22
第五章 腺苷促進大鼠腎上腺皮質細胞固醇類生合成機制—第二部分 33
第一節 結果 34
第二節 討論 36
第三節 圖及圖片說明 39
第六章 厚朴酚刺激大鼠腎上腺皮質酮分泌之機制探討 46
第一節 結果 47
第二節 討論 49
第三節 圖及圖片說明 53
第七章 未來展望 58
參考文獻 60
附錄一 英文縮寫與全名對照表 69
附錄二 腺苷刺激腎上腺皮質酮分泌的訊息傳導路徑模式圖 71
附錄三 厚朴酚刺激皮質酮分泌之訊息傳導路徑模式圖 72
[1]Wang, S.M., Lee, L.J., Lin, W.W. and Chang, C.M. (1998). Effects of a water-soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplets in cultured rat adrenocortical cells. J. Cell. Biochem 69, 483-9.
[2]Sewer, M. and Waterman, M. (2003). ACTH Modulation of Transcription Factors Responsible for Steroid Hydroxylase Gene Expression in the Adrenal Cortex. Microsc. Res. Tech 61, 300-7.
[3]Fredholm, B.B., AP, I.J., Jacobson, K.A., Klotz, K.N. and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev 53, 527-52.
[4]Yu, R., Wang, L., Zhang, H., Zhou, C. and Zhao, Y. (2004). Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75, 662-6.
[5]Zhu, J.S., Halpern, G.M. and Jones, K. (1998). The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J Altern Complement Med 4, 429-57.
[6]Li, S.P., Li, P., Dong, T.T. and Tsim, K.W. (2001). Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electropho 22, 144-50.
[7]Kiho, T., Ookubo, K., Usui, S., Ukai, S. and Hirano, K. (1999). Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol. Pharm. Bull 22, 966-70.
[8]Yaar, R., Jones, M., Chen, J. and Ravid, K. (2005). Animal models for the study of adenosine receptor function. J. Cell. Physiol 202, 9-20.
[9]Klinger, M., Freissmuth, M. and Nanoff, C. (2002). Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell. Signal 14, 99-108.
[10]Fredholm, B., Arslan, G., Halldner, L., Kull, B., Schulte, G. and Wasserman, W. (2000). Structure and function of adenosine receptors and their genes. Naunyn. Schmiedeberg''s Arch. Pharmacol 362, 364-374.
[11]Londos, C., Cooper, D. and Wolff, J. (1980). Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551-2554.
[12]Feoktistov, I. and Biaggioni, I. (1997). Adenosine A2B receptors. Pharmacol. Rev 49, 381-490.
[13]Schulte, G. and Fredholm, B.B. (2003). Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15, 813-27.
[14]Seidel, M.G., Klinger, M., Freissmuth, M. and Holler, C. (1999). Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J. Biol. Chem 274, 25833-41.
[15]Formento, M., Borsa, M. and Zoni, G. (1975). Steroidogenic effect of adenosine in the rat. Pharmacol. Res. Commun 7, 247-257.
[16]Przegalinski, E., Budziszewska, B. and Grochmal, A. (1992). Effect of adenosine analogues on plasma corticosterone concentration in rats. Acta. Endocrinol. (Copenh) 127, 471-5.
[17]Wolff, J. and Cook, G. (1977). Activation of steroidogenesis and adenylate cyclase by adenosine in adrenal an Leydig tumor. J. Biol. Chem 252, 687-693.
[18]Cooper, D.M. and Gleed, C. (1978). The action of adenosine on steroidogenesis in isolated rat adrenocortical cells. J. Steroid. Biochem 9, 973-977.
[19]Glynn, P. and Cooper, D. (1978). Inhibition of bovine adrenocortical adenylate cyclase activity by adenosine. Biochimica et Biophysica Acta. 526, 605-612.
[20]Shima, S. (1986). Inhibition by adenosine of ACTH-stimulated adenylate cyclase and steroidogenesis in the adrenal cortex. Mol. Cell. Endocrinol 47, 35-42.
[21]Lee, J. et al. (2005). Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med 71, 338-43.
[22]Teng, C.M., Yu, S.M., Chen, C.C., Huang, Y.L. and Huang, T.F. (1990). EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci 47, 1153-61.
[23]Chen, Y.H., Lin, S.J., Chen, J.W., Ku, H.H. and Chen, Y.L. (2002). Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br J Pharmacol 135, 37-47.
[24]Ho, K.Y., Tsai, C.C., Chen, C.P., Huang, J.S. and Lin, C.C. (2001). Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res 15, 139-41.
[25]Wang, S.M., Lee, L.J., Huang, Y.T., Chen, J.J. and Chen, Y.L. (2000). Magnolol stimulates steroidogenesis in rat adrenal cells. Br. J. Pharmacol. 131, 1172-1178.
[26]Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17-22.
[27]Stocco, D.M. (2000). Intramitochondrial cholesterol transfer. Biochim Biophys Acta 1486, 184-97.
[28]Ferreira, J.G., Cruz, C., Vinson, G.P. and Pignatelli, D. (2004). ACTH modulates ERK phosphorylation in the adrenal gland in a time-dependent manner. Endocr Res 30, 661-6.
[29]Martinelle, N., Holst, M., Soder, O. and Svechnikov, K. (2004). Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology 145, 4629-34.
[30]Bodart, V., Ong, H. and De Lean, A. (1995). A role for protein tyrosine kinase in the steroidogenic pathway of angiotensin II in bovine zone glomerulosa cells. J. Steroid Biochem. Mol. Biol. 54, 55-62.
[31]Bird, I.M., Imaishi, K., Pasquarette, M.M., Rainey, W.E. and Mason, J.I. (1996). Regulation of 3 beta-hydroxysteroid dehydrogenase expression in human adrenocortical H295R cells. J Endocrinol 150 Suppl, S165-73.
[32]Le, T. and Schimmer, B.P. (2001). The regulation of MAPKs in Y1 mouse adrenocortical tumor cells. Endocrinol. 142, 4282-4287.
[33]Kaminska, B., Cieresko, R.E., Opalka, M. and Dusza, L. (2002). Prolactin signaling in porcine adrenocortical cells: involvement of protein kinases. Domest. Anim. Endocrinol. 23, 475-491.
[34]Sirianni, R., Carr, B.R., Pezzi, V. and Rainey, W.E. (2001). A role for src tyrosine kinase in regulating adrenal aldosterone production. J Mol Endocrinol 26, 207-15.
[35]Li, J., Feltzer, R.E., Dawson, K.L., Hudson, E.A. and Clark, B.J. (2003). Janus kinase 2 and calcium are required for angiotensin II-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem 278, 52355-62.
[36]Clark, B.J. and Li, J. (2004). Janus kinase 2 signaling in the angiotensin II-dependent activation of StAR expression. Endocr Res 30, 685-93.
[37]Aaronson, D.S. and Horvath, C.M. (2002). A road map for those who don''t know JAK-STAT. Science 296, 1653-1655.
[38]Rane, S.G. and Reddy, E.P. (2000). Janus kinases: components of multiple signaling pathways. Oncogene 19, 5662-5679.
[39]Manna, P.R., Wang, X.J. and Stocco, D.M. (2003). Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125-34.
[40]Clem, B., Hudson, E. and Clark, B. (2005). Cyclic adenosine 3'', 5''-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinol 146, 1348-1356.
[41]Shaywitz, A.J. and Greenberg, M.E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem 68, 821-61.
[42]Givens, C.R., Zhang, P., Bair, S.R. and Mellon, S.H. (1994). Transcriptional regulation of rat cytochrome P450c17 expression in mouse Leydig MA-10 and adrenal Y-1 cells: identification of a single protein that mediates both basal and cAMP-induced activities. DNA Cell Biol 13, 1087-98.
[43]Gyles, S.L., Burns, C.J., Persaud, S.J., Jones, P.M. and Whitehouse, B.J. (2000). A role for the p42/44 isoforms of MAPK in the regulation of steroid secretion from Y1 mouse adrenocortical cells. Endocr Res 26, 579-81.
[44]Moore, R.K., Otsuka, F. and Shimasaki, S. (2001). Role of ERK1/2 in the differential synthesis of progesterone and estradiol by granulosa cells. Biochem Biophys Res Commun 289, 796-800.
[45]Chen, J.S., Chen, Y.L., Greenberg, A.S., Chen, Y.J. and Wang, S.M. (2005). Magnolol stimulates lipolysis in lipid-laden RAW 264.7 macrophages. J Cell Biochem 94, 1028-37.
[46]Huang, S.H., Shen, W.J., Yeo, H.L. and Wang, S.M. (2004). Signaling pathway of magnolol-stimulated lipolysis in sterol ester-loaded 3T3-L1 preadipocyes. J Cell Biochem 91, 1021-9.
[47]Fritz, J.D., Swartz, D.R. and Greaser, M.L. (1989). Factors affecting polyacrylamide gel electrophoresis and electroblotting of high molecular-weight myofibrillar protein. Anal. Biochem. 180, 205-210.
[48]Burgueno, J. et al. (2003). The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278, 37545-52.
[49]Wang, L., Kolachala, V., Walia, B., Balasubramanian, S., Hall, R.A., Merlin, D. and Sitaraman, S.V. (2004). Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. Am J Physiol Gastrointest Liver Physiol 287, G1100-7.
[50]Kapas, S., Purbrick, A. and Hinson, J.P. (1995). Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex. Biochem. J 305 ( Pt 2), 433-8.
[51]McNeill, H., Puddefoot, J.R. and Vinson, G.P. (1998). MAP Kinase in the rat adrenal gland. Endocr Res 24, 373-80.
[52]Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem 66, 807-22.
[53]Ritchie, P.K., Spangelo, B.L., Krzymowski, D.K., Rossiter, T.B., Kurth, E. and Judd, A.M. (1997). Adenosine increases interleukin 6 release and decreases tumour necrosis factor release from rat adrenal zona glomerulosa cells, ovarian cells, anterior pituitary cells, and peritoneal macrophages. Cytokine 9, 187-98.
[54]Schulte, G. and Fredholm, B.B. (2000). Human adenosine A1, A2A, A2B, and A3 receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol. Pharmacol 58, 477-482.
[55]Seger, R. and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J 9, 726-35.
[56]Stocco, D.M., Wang, X., Jo, Y. and Manna, P.R. (2005). Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol 19, 2647-59.
[57]Manna, P.R., Dyson, M.T., Eubank, D.W., Clark, B.J., Lalli, E., Sassone-Corsi, P., Zeleznik, A.J. and Stocco, D.M. (2002). Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16, 184-99.
[58]Sher, N., Yivgi-Ohana, N. and Orly, J. (2007). Transcriptional Regulation of the P450scc Gene (CYP11A1) Revisited: Binding of GATA, CREB and AP-1 Proteins to a Distal Novel Cluster of cis-Regulatory Elements Potentiates AP-2 and SF-1 Dependent Gene Expression in the Rodent Placenta and Ovary. Mol. Endocrinol 21, 948-62.
[59]Sheng, M., Thompson, M.A. and Greenberg, M.E. (1991). CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-30.
[60]Yang, E.J., Yoon, J.H. and Chung, K.C. (2004). Bruton''s tyrosine kinase phosphorylates cAMP-responsive element-binding protein at serine 133 during neuronal differentiation in immortalized hippocampal progenitor cells. J. Biol. Chem 279, 1827-37.
[61]Jo, Y., King, S.R., Khan, S.A. and Stocco, D.M. (2005). Involvement of protein kinase C and cyclic adenosine 3'',5''-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biol Reprod 73, 244-55.
[62]Chen, Y.C., Huang, Y.L. and Huang, B.M. (2005). Cordyceps sinensis mycelium activates PKA and PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor cells. Int. J. Biochem. Cell. Biol 37, 214-23.
[63]Hug, H. and Sarre, T.F. (1993). Protein kinase C isoenzymes: divergence in signal transduction? Biochem. J 291 ( Pt 2), 329-43.
[64]Pelosin, J.M., Ricouart, A., Sergheraert, C., Benahmed, M. and Chambaz, E.M. (1991). Expression of protein kinase C isoforms in various steroidogenic cell types. Mol. Cell. Endocrinol 75, 149-55.
[65]LeHoux, J.G., Dupuis, G. and Lefebvre, A. (2001). Control of CYP11B2 gene expression through differential regulation of its promoter by atypical and conventional protein kinase C isoforms. J. Biol. Chem 276, 8021-8.
[66]Reyland, M.E. (1993). Protein kinase C is a tonic negative regulator of steroidogenesis and steroid hydroxylase gene expression in Y-1 adrenal cells and function independent of protein kinase A. Mol. Endocrinol. 7, 1021-1030.
[67]Parekh, D.B., Ziegler, W. and Parker, P.J. (2000). Multiple pathways control protein kinase C phosphorylation. EMBO J 19, 496-503.
[68]Tian, Y., Smith, R.D., Balla, T. and Catt, K.J. (1998). Angiotensin II activates mitogen-activated protein kinase via protein kinase C and Ras/Raf-1 kinase in bovine adrenal glomerulosa cells. Endocrinol 139, 1801-9.
[69]Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. and Marshall, C. (1998). Requirement of ras-GTP-raf complexes for activation of raf-1 by protein kinase C. Science 280, 109-112.
[70]Rayter, S.I., Woodrow, M., Lucas, S.C., Cantrell, D.A. and Downward, J. (1992). p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J 11, 4549-56.
[71]Kolch, W. et al. (1993). Protein kinase C alpha activates raf-1 by direct phosphorylation. Nature 364, 249-252.
[72]Morrison, D.K., Kaplan, D.R., Rapp, U. and Roberts, T.M. (1988). Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci U S A 85, 8855-9.
[73]Bruder, J.T., Heidecker, G. and Rapp, U.R. (1992). Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 6, 545-56.
[74]Xuan, Y.T., Guo, Y., Zhu, Y., Wang, O.L., Rokosh, G., Messing, R.O. and Bolli, R. (2005). Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 112, 1971-8.
[75]Manna, P.R., Chandrala, S.P., King, S.R., Jo, Y., Counis, R., Huhtaniemi, I.T. and Stocco, D.M. (2006). Molecular Mechanisms of Insulin-like Growth Factor-I Mediated Regulation of the Steroidogenic Acute Regulatory Protein in Mouse Leydig Cells. Mol. Endocrinol
[76]Lehoux, J.G., Mathieu, A., Lavigne, P. and Fleury, A. (2003). Adrenocorticotropin regulation of steroidogenic acute regulatory protein. Microsc. Res. Tech. 61, 288-299.
[77]Wang, X.L., Bassett, M., Zhang, Y., Yin, S., Clyne, C., White, P.C. and Rainey, W.E. (2000). Transcriptional regulation of human 11beta-hydroxylase (hCYP11B1). Endocrinology 141, 3587-94.
[78]Manna, P.R., Eubank, D.W., Lalli, E., Sassone-Corsi, P. and Stocco, D.M. (2003). Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol 30, 381-97.
[79]Gyles, S.L., Burns, C.J., Whitehouse, B.J., Sugden, D., Marsh, P.J., Persaud, S.J. and Jones, P.M. (2001). ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J. Biol. Chem 276, 34888-95.
[80]Chaturvedi, G., Arai, K., Limback, D., Roby, K.F. and Terranova, P.F. (2004). Src tyrosine kinase regulates CYP17 expression and androstenedione secretion in theca-enriched mouse ovarian cells. Endocrine 25, 147-54.
[81]Luttrell, L.M., Daaka, Y. and Lefkowitz, R.J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11, 177-83.
[82]Martinat, N., Crepieux, P., Reiter, E. and Guillou, F. (2005). Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod. Nutr. Dev 45, 101-8.
[83]Seger, R., Hanoch, T., Rosenberg, R., Dantes, A., Merz, W.E., Strauss, J.F., 3rd and Amsterdam, A. (2001). The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem 276, 13957-64.
[84]Cherradi, N., Pardo, B., Greenberg, A.S., Kraemer, F.B. and Capponi, A.M. (2003). Angiotensin II activates cholesterol ester hydrolase in bovine adrenal glomerulosa cells through phosphorylation mediated by p42/p44 mitogen-activated protein kinase. Endocrinol 144, 4905-4915.
[85]Desclozeaux, M., Krylova, I.N., Horn, F., Fletterick, R.J. and Ingraham, H.A. (2002). Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol. Cell. Biol 22, 7193-203.
[86]De Cesare, D. and Sassone-Corsi, P. (2000). Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biol. 64, 343-369.
[87]Sugawara, T., Kiriakidou, M., McAllister, J.M., Kallen, C.B. and Strauss, J.F., 3rd. (1997). Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5''-flanking region are required for maximal promoter activity and cyclic AMP responsiveness. Biochem. 36, 7249-7255.
[88]Clark, B.J. and Combs, R. (1999). Angiotensin II and cyclic adenosine 3'',5''-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinol. 140, 4390-4398.
[89]Epstein, L.F. and Orme-Johnson, N.R. (1991). Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem 266, 19739-45.
[90]Granot, Z. et al. (2003). Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins. Mol Endocrinol 17, 2461-76.
[91]Tajima, K., Babich, S., Yoshida, Y., Dantes, A., Strauss, J.r. and Amsterdam, A. (2001). The proteasome inhibitor MG132 promotes accumulation of the steroidogenic acute regulatory protein (StAR) and steroidogenesis. FEBS Letters 490, 59-64.
[92]Artemenko, I.P., Zhao, D., Hales, D.B., Hales, K.H. and Jefcoate, C.R. (2001). Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem 276, 46583-96.
[93]Clark, B.J., Ranganathan, V. and Combs, R. (2000). Post-translational regulation of steroidogenic acute regulatory protein by cAMP-dependent protein kinase A. Endocr Res 26, 681-9.
[94]Clark, B.J., Ranganathan, V. and Combs, R. (2001). Steroidogenic acute regulatory protein expression is dependent upon post-translational effects of cAMP-dependent protein kinase A. Mol Cell Endocrinol 173, 183-92.
[95]Greenberg, A.S., Shen, W.J., Muliro, K., Patel, S., Souza, S.C., Roth, R.A. and Kraemer, F.B. (2001). Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 45456-45461.
[96]Kraemer, F.B., Shen, W., Harada, K., Patel, S., Osuga, J.I., Ishibashi, S. and Azhar, S. (2004). Hormone-sensitive lipase is required for HDL cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549-557.
[97]Chien, C.L., Chen, Y.C., Chang, M.F., Greenberg, A.S. and Wang, S.M. (2005). Magnolol induces the distributional changes of p160 and adipose differentiation-related protein in adrenal cells. Histochem Cell Biol 123, 429-39.
[98]Fredholm, B.B. (2007). Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14, 1315-23.
[99]Cronstein, B.N. (1994). Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76, 5-13.
[100]Cronstein, B.N. (2005). Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57, 163-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top