|
[1]Wang, S.M., Lee, L.J., Lin, W.W. and Chang, C.M. (1998). Effects of a water-soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplets in cultured rat adrenocortical cells. J. Cell. Biochem 69, 483-9. [2]Sewer, M. and Waterman, M. (2003). ACTH Modulation of Transcription Factors Responsible for Steroid Hydroxylase Gene Expression in the Adrenal Cortex. Microsc. Res. Tech 61, 300-7. [3]Fredholm, B.B., AP, I.J., Jacobson, K.A., Klotz, K.N. and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev 53, 527-52. [4]Yu, R., Wang, L., Zhang, H., Zhou, C. and Zhao, Y. (2004). Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75, 662-6. [5]Zhu, J.S., Halpern, G.M. and Jones, K. (1998). The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J Altern Complement Med 4, 429-57. [6]Li, S.P., Li, P., Dong, T.T. and Tsim, K.W. (2001). Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electropho 22, 144-50. [7]Kiho, T., Ookubo, K., Usui, S., Ukai, S. and Hirano, K. (1999). Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol. Pharm. Bull 22, 966-70. [8]Yaar, R., Jones, M., Chen, J. and Ravid, K. (2005). Animal models for the study of adenosine receptor function. J. Cell. Physiol 202, 9-20. [9]Klinger, M., Freissmuth, M. and Nanoff, C. (2002). Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell. Signal 14, 99-108. [10]Fredholm, B., Arslan, G., Halldner, L., Kull, B., Schulte, G. and Wasserman, W. (2000). Structure and function of adenosine receptors and their genes. Naunyn. Schmiedeberg''s Arch. Pharmacol 362, 364-374. [11]Londos, C., Cooper, D. and Wolff, J. (1980). Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551-2554. [12]Feoktistov, I. and Biaggioni, I. (1997). Adenosine A2B receptors. Pharmacol. Rev 49, 381-490. [13]Schulte, G. and Fredholm, B.B. (2003). Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15, 813-27. [14]Seidel, M.G., Klinger, M., Freissmuth, M. and Holler, C. (1999). Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J. Biol. Chem 274, 25833-41. [15]Formento, M., Borsa, M. and Zoni, G. (1975). Steroidogenic effect of adenosine in the rat. Pharmacol. Res. Commun 7, 247-257. [16]Przegalinski, E., Budziszewska, B. and Grochmal, A. (1992). Effect of adenosine analogues on plasma corticosterone concentration in rats. Acta. Endocrinol. (Copenh) 127, 471-5. [17]Wolff, J. and Cook, G. (1977). Activation of steroidogenesis and adenylate cyclase by adenosine in adrenal an Leydig tumor. J. Biol. Chem 252, 687-693. [18]Cooper, D.M. and Gleed, C. (1978). The action of adenosine on steroidogenesis in isolated rat adrenocortical cells. J. Steroid. Biochem 9, 973-977. [19]Glynn, P. and Cooper, D. (1978). Inhibition of bovine adrenocortical adenylate cyclase activity by adenosine. Biochimica et Biophysica Acta. 526, 605-612. [20]Shima, S. (1986). Inhibition by adenosine of ACTH-stimulated adenylate cyclase and steroidogenesis in the adrenal cortex. Mol. Cell. Endocrinol 47, 35-42. [21]Lee, J. et al. (2005). Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med 71, 338-43. [22]Teng, C.M., Yu, S.M., Chen, C.C., Huang, Y.L. and Huang, T.F. (1990). EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci 47, 1153-61. [23]Chen, Y.H., Lin, S.J., Chen, J.W., Ku, H.H. and Chen, Y.L. (2002). Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br J Pharmacol 135, 37-47. [24]Ho, K.Y., Tsai, C.C., Chen, C.P., Huang, J.S. and Lin, C.C. (2001). Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res 15, 139-41. [25]Wang, S.M., Lee, L.J., Huang, Y.T., Chen, J.J. and Chen, Y.L. (2000). Magnolol stimulates steroidogenesis in rat adrenal cells. Br. J. Pharmacol. 131, 1172-1178. [26]Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17-22. [27]Stocco, D.M. (2000). Intramitochondrial cholesterol transfer. Biochim Biophys Acta 1486, 184-97. [28]Ferreira, J.G., Cruz, C., Vinson, G.P. and Pignatelli, D. (2004). ACTH modulates ERK phosphorylation in the adrenal gland in a time-dependent manner. Endocr Res 30, 661-6. [29]Martinelle, N., Holst, M., Soder, O. and Svechnikov, K. (2004). Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology 145, 4629-34. [30]Bodart, V., Ong, H. and De Lean, A. (1995). A role for protein tyrosine kinase in the steroidogenic pathway of angiotensin II in bovine zone glomerulosa cells. J. Steroid Biochem. Mol. Biol. 54, 55-62. [31]Bird, I.M., Imaishi, K., Pasquarette, M.M., Rainey, W.E. and Mason, J.I. (1996). Regulation of 3 beta-hydroxysteroid dehydrogenase expression in human adrenocortical H295R cells. J Endocrinol 150 Suppl, S165-73. [32]Le, T. and Schimmer, B.P. (2001). The regulation of MAPKs in Y1 mouse adrenocortical tumor cells. Endocrinol. 142, 4282-4287. [33]Kaminska, B., Cieresko, R.E., Opalka, M. and Dusza, L. (2002). Prolactin signaling in porcine adrenocortical cells: involvement of protein kinases. Domest. Anim. Endocrinol. 23, 475-491. [34]Sirianni, R., Carr, B.R., Pezzi, V. and Rainey, W.E. (2001). A role for src tyrosine kinase in regulating adrenal aldosterone production. J Mol Endocrinol 26, 207-15. [35]Li, J., Feltzer, R.E., Dawson, K.L., Hudson, E.A. and Clark, B.J. (2003). Janus kinase 2 and calcium are required for angiotensin II-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem 278, 52355-62. [36]Clark, B.J. and Li, J. (2004). Janus kinase 2 signaling in the angiotensin II-dependent activation of StAR expression. Endocr Res 30, 685-93. [37]Aaronson, D.S. and Horvath, C.M. (2002). A road map for those who don''t know JAK-STAT. Science 296, 1653-1655. [38]Rane, S.G. and Reddy, E.P. (2000). Janus kinases: components of multiple signaling pathways. Oncogene 19, 5662-5679. [39]Manna, P.R., Wang, X.J. and Stocco, D.M. (2003). Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125-34. [40]Clem, B., Hudson, E. and Clark, B. (2005). Cyclic adenosine 3'', 5''-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinol 146, 1348-1356. [41]Shaywitz, A.J. and Greenberg, M.E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem 68, 821-61. [42]Givens, C.R., Zhang, P., Bair, S.R. and Mellon, S.H. (1994). Transcriptional regulation of rat cytochrome P450c17 expression in mouse Leydig MA-10 and adrenal Y-1 cells: identification of a single protein that mediates both basal and cAMP-induced activities. DNA Cell Biol 13, 1087-98. [43]Gyles, S.L., Burns, C.J., Persaud, S.J., Jones, P.M. and Whitehouse, B.J. (2000). A role for the p42/44 isoforms of MAPK in the regulation of steroid secretion from Y1 mouse adrenocortical cells. Endocr Res 26, 579-81. [44]Moore, R.K., Otsuka, F. and Shimasaki, S. (2001). Role of ERK1/2 in the differential synthesis of progesterone and estradiol by granulosa cells. Biochem Biophys Res Commun 289, 796-800. [45]Chen, J.S., Chen, Y.L., Greenberg, A.S., Chen, Y.J. and Wang, S.M. (2005). Magnolol stimulates lipolysis in lipid-laden RAW 264.7 macrophages. J Cell Biochem 94, 1028-37. [46]Huang, S.H., Shen, W.J., Yeo, H.L. and Wang, S.M. (2004). Signaling pathway of magnolol-stimulated lipolysis in sterol ester-loaded 3T3-L1 preadipocyes. J Cell Biochem 91, 1021-9. [47]Fritz, J.D., Swartz, D.R. and Greaser, M.L. (1989). Factors affecting polyacrylamide gel electrophoresis and electroblotting of high molecular-weight myofibrillar protein. Anal. Biochem. 180, 205-210. [48]Burgueno, J. et al. (2003). The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278, 37545-52. [49]Wang, L., Kolachala, V., Walia, B., Balasubramanian, S., Hall, R.A., Merlin, D. and Sitaraman, S.V. (2004). Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. Am J Physiol Gastrointest Liver Physiol 287, G1100-7. [50]Kapas, S., Purbrick, A. and Hinson, J.P. (1995). Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex. Biochem. J 305 ( Pt 2), 433-8. [51]McNeill, H., Puddefoot, J.R. and Vinson, G.P. (1998). MAP Kinase in the rat adrenal gland. Endocr Res 24, 373-80. [52]Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem 66, 807-22. [53]Ritchie, P.K., Spangelo, B.L., Krzymowski, D.K., Rossiter, T.B., Kurth, E. and Judd, A.M. (1997). Adenosine increases interleukin 6 release and decreases tumour necrosis factor release from rat adrenal zona glomerulosa cells, ovarian cells, anterior pituitary cells, and peritoneal macrophages. Cytokine 9, 187-98. [54]Schulte, G. and Fredholm, B.B. (2000). Human adenosine A1, A2A, A2B, and A3 receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol. Pharmacol 58, 477-482. [55]Seger, R. and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J 9, 726-35. [56]Stocco, D.M., Wang, X., Jo, Y. and Manna, P.R. (2005). Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol 19, 2647-59. [57]Manna, P.R., Dyson, M.T., Eubank, D.W., Clark, B.J., Lalli, E., Sassone-Corsi, P., Zeleznik, A.J. and Stocco, D.M. (2002). Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16, 184-99. [58]Sher, N., Yivgi-Ohana, N. and Orly, J. (2007). Transcriptional Regulation of the P450scc Gene (CYP11A1) Revisited: Binding of GATA, CREB and AP-1 Proteins to a Distal Novel Cluster of cis-Regulatory Elements Potentiates AP-2 and SF-1 Dependent Gene Expression in the Rodent Placenta and Ovary. Mol. Endocrinol 21, 948-62. [59]Sheng, M., Thompson, M.A. and Greenberg, M.E. (1991). CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-30. [60]Yang, E.J., Yoon, J.H. and Chung, K.C. (2004). Bruton''s tyrosine kinase phosphorylates cAMP-responsive element-binding protein at serine 133 during neuronal differentiation in immortalized hippocampal progenitor cells. J. Biol. Chem 279, 1827-37. [61]Jo, Y., King, S.R., Khan, S.A. and Stocco, D.M. (2005). Involvement of protein kinase C and cyclic adenosine 3'',5''-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biol Reprod 73, 244-55. [62]Chen, Y.C., Huang, Y.L. and Huang, B.M. (2005). Cordyceps sinensis mycelium activates PKA and PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor cells. Int. J. Biochem. Cell. Biol 37, 214-23. [63]Hug, H. and Sarre, T.F. (1993). Protein kinase C isoenzymes: divergence in signal transduction? Biochem. J 291 ( Pt 2), 329-43. [64]Pelosin, J.M., Ricouart, A., Sergheraert, C., Benahmed, M. and Chambaz, E.M. (1991). Expression of protein kinase C isoforms in various steroidogenic cell types. Mol. Cell. Endocrinol 75, 149-55. [65]LeHoux, J.G., Dupuis, G. and Lefebvre, A. (2001). Control of CYP11B2 gene expression through differential regulation of its promoter by atypical and conventional protein kinase C isoforms. J. Biol. Chem 276, 8021-8. [66]Reyland, M.E. (1993). Protein kinase C is a tonic negative regulator of steroidogenesis and steroid hydroxylase gene expression in Y-1 adrenal cells and function independent of protein kinase A. Mol. Endocrinol. 7, 1021-1030. [67]Parekh, D.B., Ziegler, W. and Parker, P.J. (2000). Multiple pathways control protein kinase C phosphorylation. EMBO J 19, 496-503. [68]Tian, Y., Smith, R.D., Balla, T. and Catt, K.J. (1998). Angiotensin II activates mitogen-activated protein kinase via protein kinase C and Ras/Raf-1 kinase in bovine adrenal glomerulosa cells. Endocrinol 139, 1801-9. [69]Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. and Marshall, C. (1998). Requirement of ras-GTP-raf complexes for activation of raf-1 by protein kinase C. Science 280, 109-112. [70]Rayter, S.I., Woodrow, M., Lucas, S.C., Cantrell, D.A. and Downward, J. (1992). p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J 11, 4549-56. [71]Kolch, W. et al. (1993). Protein kinase C alpha activates raf-1 by direct phosphorylation. Nature 364, 249-252. [72]Morrison, D.K., Kaplan, D.R., Rapp, U. and Roberts, T.M. (1988). Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci U S A 85, 8855-9. [73]Bruder, J.T., Heidecker, G. and Rapp, U.R. (1992). Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 6, 545-56. [74]Xuan, Y.T., Guo, Y., Zhu, Y., Wang, O.L., Rokosh, G., Messing, R.O. and Bolli, R. (2005). Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 112, 1971-8. [75]Manna, P.R., Chandrala, S.P., King, S.R., Jo, Y., Counis, R., Huhtaniemi, I.T. and Stocco, D.M. (2006). Molecular Mechanisms of Insulin-like Growth Factor-I Mediated Regulation of the Steroidogenic Acute Regulatory Protein in Mouse Leydig Cells. Mol. Endocrinol [76]Lehoux, J.G., Mathieu, A., Lavigne, P. and Fleury, A. (2003). Adrenocorticotropin regulation of steroidogenic acute regulatory protein. Microsc. Res. Tech. 61, 288-299. [77]Wang, X.L., Bassett, M., Zhang, Y., Yin, S., Clyne, C., White, P.C. and Rainey, W.E. (2000). Transcriptional regulation of human 11beta-hydroxylase (hCYP11B1). Endocrinology 141, 3587-94. [78]Manna, P.R., Eubank, D.W., Lalli, E., Sassone-Corsi, P. and Stocco, D.M. (2003). Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol 30, 381-97. [79]Gyles, S.L., Burns, C.J., Whitehouse, B.J., Sugden, D., Marsh, P.J., Persaud, S.J. and Jones, P.M. (2001). ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J. Biol. Chem 276, 34888-95. [80]Chaturvedi, G., Arai, K., Limback, D., Roby, K.F. and Terranova, P.F. (2004). Src tyrosine kinase regulates CYP17 expression and androstenedione secretion in theca-enriched mouse ovarian cells. Endocrine 25, 147-54. [81]Luttrell, L.M., Daaka, Y. and Lefkowitz, R.J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11, 177-83. [82]Martinat, N., Crepieux, P., Reiter, E. and Guillou, F. (2005). Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod. Nutr. Dev 45, 101-8. [83]Seger, R., Hanoch, T., Rosenberg, R., Dantes, A., Merz, W.E., Strauss, J.F., 3rd and Amsterdam, A. (2001). The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem 276, 13957-64. [84]Cherradi, N., Pardo, B., Greenberg, A.S., Kraemer, F.B. and Capponi, A.M. (2003). Angiotensin II activates cholesterol ester hydrolase in bovine adrenal glomerulosa cells through phosphorylation mediated by p42/p44 mitogen-activated protein kinase. Endocrinol 144, 4905-4915. [85]Desclozeaux, M., Krylova, I.N., Horn, F., Fletterick, R.J. and Ingraham, H.A. (2002). Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol. Cell. Biol 22, 7193-203. [86]De Cesare, D. and Sassone-Corsi, P. (2000). Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biol. 64, 343-369. [87]Sugawara, T., Kiriakidou, M., McAllister, J.M., Kallen, C.B. and Strauss, J.F., 3rd. (1997). Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5''-flanking region are required for maximal promoter activity and cyclic AMP responsiveness. Biochem. 36, 7249-7255. [88]Clark, B.J. and Combs, R. (1999). Angiotensin II and cyclic adenosine 3'',5''-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinol. 140, 4390-4398. [89]Epstein, L.F. and Orme-Johnson, N.R. (1991). Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem 266, 19739-45. [90]Granot, Z. et al. (2003). Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins. Mol Endocrinol 17, 2461-76. [91]Tajima, K., Babich, S., Yoshida, Y., Dantes, A., Strauss, J.r. and Amsterdam, A. (2001). The proteasome inhibitor MG132 promotes accumulation of the steroidogenic acute regulatory protein (StAR) and steroidogenesis. FEBS Letters 490, 59-64. [92]Artemenko, I.P., Zhao, D., Hales, D.B., Hales, K.H. and Jefcoate, C.R. (2001). Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem 276, 46583-96. [93]Clark, B.J., Ranganathan, V. and Combs, R. (2000). Post-translational regulation of steroidogenic acute regulatory protein by cAMP-dependent protein kinase A. Endocr Res 26, 681-9. [94]Clark, B.J., Ranganathan, V. and Combs, R. (2001). Steroidogenic acute regulatory protein expression is dependent upon post-translational effects of cAMP-dependent protein kinase A. Mol Cell Endocrinol 173, 183-92. [95]Greenberg, A.S., Shen, W.J., Muliro, K., Patel, S., Souza, S.C., Roth, R.A. and Kraemer, F.B. (2001). Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 45456-45461. [96]Kraemer, F.B., Shen, W., Harada, K., Patel, S., Osuga, J.I., Ishibashi, S. and Azhar, S. (2004). Hormone-sensitive lipase is required for HDL cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549-557. [97]Chien, C.L., Chen, Y.C., Chang, M.F., Greenberg, A.S. and Wang, S.M. (2005). Magnolol induces the distributional changes of p160 and adipose differentiation-related protein in adrenal cells. Histochem Cell Biol 123, 429-39. [98]Fredholm, B.B. (2007). Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14, 1315-23. [99]Cronstein, B.N. (1994). Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76, 5-13. [100]Cronstein, B.N. (2005). Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57, 163-72.
|