|
[1] J. Y. Song, J. K. Lee, N. W. Lee, H. H. Jung, S. H. Kim, and K. W. Lee. Microarray analysis of normal cervix, carcinoma in situ, and invasive cervical cancer: identification of candidate genes in pathogenesis of invasion in cervical cancer. Int J Gynecol Cancer, 2008. PMID: 18217980. [2] F. Ezgu, A. Hasanoglu, I. Okur, G. Biberoglu, L. Tumer, T. Eminoglu, and H. Dogan. Rapid screening of 10 common mutations in turkish gaucher patients using electronic dna microarray. Blood Cells, Molecules, and Diseases, November 2007. PMID: 18035560. [3] K. R. Calvo, L. A. Liotta, and E. F. Petricoin. Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy. Bioscience reports, 25:107–25. PMID: 16222423. [4] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics (Oxford, England), 21:631–643, 2005. [5] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, USA, 1995. [6] M. Pirooznia, J. Yang, M. Q. Yang, and Y. Deng. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, 9:S13, 2008. [7] C. H. Li. Cancer classification with evolutional radial basis function network. Master’s thesis, National Taiwan University, 2005. [8] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, O. P. Kallioniemi, B. Wilfond, A. Borg, J. Trent, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty, J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Olsson, and G. Sauter. Gene-expression profiles in hereditary breast cancer. The New England journal of medicine, 344:539–48, February 2001. PMID: 11207349. [9] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics (Oxford, England), 16:906–14, October 2000. PMID: 11120680. [10] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science (New York, N.Y.), 286:531–7, October 1999. PMID: 10521349. [11] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini. Tissue classification with gene expression profiles. Journal of computational biology : a journal of computational molecular cell biology, 7:559–83, 2000. PMID: 11108479. [12] P. J. Park, M. Pagano, and M. Bonetti. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pacific Symposium on Biocomputing., pages 52–63, 2001. PMID: 11262969. [13] H. Y. Chuang, H. K. Tsai, Y. F. Tsai, and C. Y. Kao. Ranking genes for discriminability on microarray data. Journal of Information Science and Engineering, 19:953–966, 2003. [14] H. Y. Chuang, H. Liu, S. Brown, C. McMunn-Coffran, C. Y. Kao, and D. F. Hsu. Identifying significant genes from microarray data. Bioinformatics and Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Symposium on, pages 358–365, 2004. [15] A. Hofmann, T. Horeis, and B. Sick. Feature selection for intrusion detection: an evolutionary wrapper approach. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 1563–1568 vol.2, 2004. [16] B. Duan and Y. H. Pao. Iterative feature weighting for identification of relevant features with radial basis function networks. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference on, volume 2, pages 1063–1068 vol. 2, 2005. [17] C. T. Su, C. Y. Chen, and Y. Y. Ou. Protein disorder prediction by condensed pssm considering propensity for order or disorder. BMC bioinformatics, 7:319, 2006. PMID: 16796745. [18] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389–422, 2002. [19] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97:273–324, 1997. [20] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. Journal of Machine Learning Research, 2:243–264, 2002. [21] J. P. Zhang, Z. W. Li, and J. Yang. A parallel svm training algorithm on large-scale classification problems. Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, 3, 2005. [22] Quickrbf: an efficient rbfn package. http://www.csie.ntu.edu.tw/˜ yien/quickrbf/. [23] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc, 51:406–413, 1955. [24] C. T. Su, C. Y. Chen, and C. M. Hsu. ipda: integrated protein disorder analyzer. Nucleic Acids Research, 35, July 2007. [25] Y. S. Hwang and S. Y. Bang. An efficient method to construct a radial basis function neural network classifier. Neural Networks, 10:1495–1503, 1997. [26] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock,W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, February 2000. [27] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C.T. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster, and T. R. Golub. Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med, 8:68–74, 2002. [28] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1:203–209, March 2002. [29] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 96:6745–50, 1999. [30] Kent ridge bio-medical data set repository. http://sdmc.lit.org.sg/gedatasets/datasets. [31] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie.ntu.edu.tw/˜ cjlin/libsvm. [32] J. Lu, S. Hardy, W. L. Tao, S. Muse, B. Weir, and S. Spruill. Classical statistical approaches to molecular classification of cancer from gene expression profiling. Methods of Microarray Data Analysis, 2002. [33] C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences, 99:6562–6566, May 2002. [34] W. Zhao, M. E. Daneshpouy, N. Mounier, J. Bri`ere, C. Leboeuf, L. Plassa, E. Turpin, J. M. Cayuela, J. C. Ameisen, C. Gisselbrecht, and A. Janin. Prognostic significance of bcl-xl gene expression and apoptotic cell counts in follicular lymphoma. Blood, 103:695–7, 2004. PMID: 12969962. [35] J Ying, H Li, Y Cui, A. H. Y. Wong, C Langford, and Q Tao. Epigenetic disruption of two proapoptotic genes mapk10//jnk3 and ptpn13//fap-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia, 20:1173–1175, March 2006. [36] T. W. Behrens, J. Jagadeesh, P. Scherle, G. Kearns, J. Yewdell, and L. M. Staudt. Jaw1, a lymphoid-restricted membrane protein localized to the endoplasmic reticulum. Journal of immunology (Baltimore, Md. : 1950), 153:682–90, July 1994. PMID: 8021504. [37] N. Ortonne, J. Dupuis, A. Plonquet, N. Martin, C. Copie-Bergman, M. Bagot, M. Delfau-Larue, A. Gaulier, C. Haioun, J. Wechsler, and P. Gaulard. Characterization of cxcl13+ neoplastic t cells in cutaneous lesions of ngioimmunoblastic t-cell lymphoma (aitl). The American journal of surgical pathology, 31:1068–76, July 2007. PMID: 17592274. [38] C. Iavarone, C. Wolfgang, V. Kumar, P. Duray, M. Willingham, I. Pastan, and T. K. Bera. Page4 is a toplasmic protein that is expressed in normal prostate and in prostate cancers. Molecular cancer therapeutics, 1:329–35, March 2002. PMID: 12489849. [39] M. L. Nagpal, J. Davis, and T. Lin. Overexpression of cxcl10 in human prostate lncap cells activates its receptor cxcr3) expression and inhibits cell proliferation. Biochimica et biophysica acta, 1762:811–8, September 2006. PMID: 16934957. [40] S. Takahashi, S. Suzuki, S. Inaguma, Y. Ikeda, Y. M. Cho, N. Nishiyama, T. Fujita, T. Inoue, T. Hioki, Y. Sugimura, T. Ushijima, and T. Shirai. Down-regulation of human x-box binding protein 1 (hxbp-1) expression correlates with tumor progression in human prostate cancers. The Prostate, 50:154–61, February 2002. PMID: 11813207. [41] Z. Chen, Z. Fan, J. E. McNeal, R. Nolley, M. C. Caldwell, M. Mahadevappa, Z. Zhang, J. A. Warrington, and T. A. Stamey. Hepsin and maspin are inversely expressed in laser capture microdissectioned prostate cancer. The Journal of urology, 169:1316–9, April 2003. PMID: 12629351. [42] B. Johansson, M. R. Pourian, Y. C. Chuan, I. Byman, A. Bergh, S. T. Pang, G. Norstedt, T. Bergman, and A. Pousette. Proteomic comparison of prostate cancer cell lines lncap-fgc and lncap-r reveals heatshock protein 60 as a marker for prostate malignancy. The Prostate, 66:1235–44, September 2006. PMID: 16705742. [43] S. Ohtsuki, M. Kamoi, Y.Watanabe, H. Suzuki, S. Hori, and T. Terasaki. Correlation of induction of atp binding cassette transporter a5 (abca5) and abcb1 mrnas with differentiation state of human colon tumor. Biological & pharmaceutical bulletin, 30:1144–6, June 2007. PMID: 17541169. [44] D. G. Tang, Y. Q. Chen, P. J. Newman, L. Shi, X. Gao, C. A. Diglio, and K. V. Honn. Identification of pecam-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. The Journal of biological chemistry, 268:22883–94, October 1993. PMID: 8226797. [45] K. B. Bowen, A. P. Reimers, S. Luman, J. D. Kronz, W. E. Fyffe, and J. T. Oxford. Immunohistochemical localization of collagen type xi alpha1 and alpha2 chains in human colon tissue. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 56:275–83, March 2008. PMID: 18040076. [46] E. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21:768, 1965. [47] Y. Ding and D. Wilkins. Improving the performance of svm-rfe to select genes in microarray data. BMC Bioinformatics, 7 Suppl 2:S12, September 2006. PMID: 17118133.
|