|
[1] H. Asoh, Y. Motomura, F. Asano, I. Hara, S. Hayamizu, K. Itou, T. Kurita, T. Matsui, N. Vlassis, R. Bunschoten, et al. Jijo-2: An Office Robot That Communicates and Learns. 2001. [2] R. Siegwart, K.O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, et al. Robox at Expo. 02: A large-scale installation of personal robots. Robotics and Autonomous Systems, 42(3-4):203–222, 2003. [3] L. Armesto, G. Ippoliti, S. Longhi, and J. Tornero. FastSLAM 2.0: Least-Squares Approach. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5013–5018, 2006. [4] Chieh-Chih Wang. Simultaneous Localization, Mapping and Moving Object Tracking. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, April 2004. [5] T. Jost and H. Hugli. A multi-resolution scheme icp algorithm for fast shape registration. In Proceedings First International Symposium on 3D Data Processing Visualization and Transmission, 2002, pages 540–543, 2002. [6] P. Newman, D. Cole, and K. Ho. Outdoor slam using visual appearance an laser ranging. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 1180–1187, 2006. [7] Junqiu Wang, Hongbin Zha, and R. Cipolla. Coarse-to-fine vision-based localization by indexing scale-invariant features. Systems, Man, and Cybernetics, Part B, IEEE Transactions on, 36(2):413–422, April 2006. ISSN 1083-4419. [8] D. Lowe. Distinctive image features from scale-invariant keypoints. In International Journal of Computer Vision, volume 20, pages 91–110, 2003. [9] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded-up robust features. In 9th European Conference on Computer Vision, Graz, Austria. [10] P.J. Besl and H.D. McKay. A method for registration of 3-d shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239–256, Feb 1992. ISSN 0162-8828. [11] Junqiu Wang, Junqiu Wang, R. Cipolla, and Hongbin Zha. Vision-based global localization using a visual vocabulary. In R. Cipolla, editor, Proc. IEEE International Conference on Robotics and Automation ICRA 2005, pages 4230–4235, 2005. [12] Robert Sim and Gregory Dudek. Learning environmental features for pose estimation. Image Vision Comput., 19(11):733–739, 2001. [13] Benjamin Kuipers Emilio Remolina. Towards a general theory of topological maps. Artificial Intelligence, 2004. [14] H. Choset, H. Choset, and K. Nagatani. Topological simultaneous localization and mapping (slam): toward exact localization without explicit localization. 17 (2):125–137, 2001. ISSN 1042-296X. [15] D. Crisan and A. Doucet. A survey of convergence results on particle filtering for practitioners, 2002. [16] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI. [17] Hans P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 1988. [18] B. Kuipers, J.Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local metrical and global topological maps in the hybrid spatial semantic hierarchy. Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, 5. [19] J. Wolf, J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for mobile robots using an image retrieval system based on invariant features. In W. Burgard, editor, Proc. IEEE International Conference on Robotics and Automation ICRA ’02, volume 1, pages 359–365 vol.1, 2002. [20] T. Starner, T. Starner, B. Schiele, and A. Pentland. Visual contextual awareness in wearable computing. In B. Schiele, editor, Proc. Digest of Papers Wearable Computers Second International Symposium on, pages 50–57, 1998. [21] Loic Lacheze, Loic Lacheze, and Ryad Benosman. Visual localization using an optimal sampling of bags-of-features with entropy applied to repeatable test methods. In Ryad Benosman, editor, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2007, pages 1332–1338, 2007. [22] J. Wang, R. Cipolla, and H. Zha. Vision-based Global Localization Using a Visual Vocabulary. Robotics and Automation, 2005. Proceedings of the 2005 IEEE International Conference on, pages 4230–4235, 2005. [23] C. Harris and M. Stephens. A combined corner and edge detector. Alvey Vision Conference, 15:50, 1988. [24] T. Lindeberg. Feature Detection with Automatic Scale Selection. International Journal of Computer Vision, 30(2):79–116, 1998. [25] K. Mikolajczyk and C. Schmid. Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision, 60(1):63–86, 2004. [26] LMJ Florack, BM Ter Haar Romeny, JJ Koenderink, and MA Viergever. General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision, 4(2):171–187, 1994. [27] WT Freeman and EH Adelson. The design and use of steerable filters. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 13(9):891–906, 1991. [28] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2):167–181, 2004. [29] A. Torralba, KP Murphy, WT Freeman, and MA Rubin. Context-based vision system for place and object recognition. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 273–280, 2003. [30] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for topological localization. PROC IEEE INT CONF ROB AUTOM, 2:1023–1029, 2000. [31] C. Siagian and L. Itti. Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, pages 300–312, 2007. [32] H. Greenspan, J. Goldberger, and L. Ridel. A continuous probabilistic framework for image matching. Computer Vision and Image Understanding, 84(3): 384–406, 2001. [33] J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object matching in videos. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1470–1477, 2003. [34] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, pages 881–892, 2002.
|