跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方昱文
研究生(外文):Yu-Wen Fang
論文名稱:利用Jacob近似法探討空間異質場對抽水試驗之影響
論文名稱(外文):Using Jacob’s Method to Discuss the Influences of Spatial Heterogeneous Field on Pumping Tests
指導教授:譚義績譚義績引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:異質場抽水試驗Jacob近似法Theis法VSAFT2
外文關鍵詞:heterogeneous fieldpumping testJacob approximationTheis methodVSAFT2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的,是探討在異質含水層進行抽水試驗時,能否由觀測點的洩降數據,推估出具有足夠代表性的含水層特性參數。研究中對Jocab近似法及Theis法進行重新檢討,利用不同方法分析抽水試驗時詮釋資料的特性。
研究目標包括:(1)均質含水層中,可由總水頭梯度推估代表含水層特性的流通係數;異質含水層中,不同總水頭梯度所得到的流通係數,與其內部各點不同之含水層特性參數的關係,存在何種平均方式最能夠表示異質含水層之流通特性。(2)以往利用抽水試驗洩降數據進行含水層特性分析時,多採用Jacob近似法或是Theis法,理論上僅能應用於含水層幾近於均質的情況,應用於異質含水層時,是否仍能推估出具代表性的含水層參數。(3)利用均質場的模擬洩降資料進行以上方法的推估,推估得到的均質含水層特性與實際之差異。(4)藉由抽水試驗分析結果比較與實際流場之差異,並探討若採用不同抽水量進行抽水,是否會產生不同的含水層特性推估結果。
本研究選用VSAFT2數值模式進行含水層試驗的模擬,以得出各種不同條件下的數值試驗結果。並根據數值試驗的模擬數據,比較各種不同模擬結果之間,對於推求含水層特性產生的影響。研究結果顯示平行流場之有效流通係數,最接近隨機場網格點T值的幾何平均,而徑向流抽水試驗利用Jacob近似法與Theis法推求之流通係數與均質場之有效流通係數Teffp相當接近,但隨著異質度增加誤差隨之增大,利用 Jacob近似法與Theis法推求之流通係數對於真實含水層特性的描述能力大幅下降。利用全域最佳套配時段的方式,無法建立觀測點與抽水井距離和最佳套配時間區段的關係。利用區段u套配尋找最佳套配T,雖然在異質性含水層模擬試驗中並未呈現明顯的趨勢,但在均質場中最佳套配T的區間落於u = 0.01~0.02之間,顯示利用晚期抽水洩降資料確可獲得較佳的推估流通係數。
The purpose of this study is to estimate representative aquifer parameters via drawdown data collected during pumping tests in heterogeneous fields. Jacob approximation and Theis method are reexamined along with Best-fit methods for pumping test analysis.
The objects include;(1)searching for the representative average for aquifer parameters under different hydraulic gradients, (2)examining if the Jacob approximation and Theis method remain available in heterogeneous fields for estimating representative parameters, (3)comparing the differences between the estimated parameters and the effective transmissivity, (4)differentiating the estimates derived from pumping tests and natural flow of radial flow and parallel flow respectively, and then discussing the results derived under different variances and pumping rates.
A numerical model, VSAFT2, is used to simulate the aquifer tests to derive effective transmissivities under different conditions. The results showed that the effective transmissivities come most closely to the generated points’ geometric mean. Transmissivities estimated by Jacob approximation and Theis method under radial flow are representative in homogeneous field, however, the deviation may increase with variance thus decrease the describing abilities for actual characteristics. The relation between the distance from observation point to pumping well and the best-fit section is not able to be developed so far. It can be found that a high percentage of the best-fit sections fall at u=0.01~0.02 though there’s not an obvious trend to determine the representative transmissivities according to the pumping test data.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VⅢ

第一章 緒論 1-1
1.1 研究動機 1-1
1.2 研究目標 1-2
1.3 研究方法概述 1-3
1.4 文獻回顧 1-4
1.5 論文架構 1-8

第二章 異質性含水層特性探討 2-1
2.1 空間異質場地下水流理論 2-1
2.1.1 達西定律 2-1
2.1.2 流通係數T 2-2
2.1.3 儲水係數S 2-3
2.1.4 地下水流方程式 2-6
2.2 異質性含水層空間統計 2-10
2.2.1 遍歷性與動差推估 2-10
2.2.2 含水層之序率特性與異質性 2-12
2.3 地下水參數與含水層試驗 2-14
2.3.1 穩態法含水層試驗 2-14
2.3.2 瞬態法含水層試驗 2-14
2.3.3 含水層有效參數 2-20

第三章 利用數值模式模擬含水層試驗 3-1
3.1 VSAFT2數值模擬異質性含水層 3-1

第四章 案例分析與討論 4-1
4.1 平行流場含水層試驗 4-2
4.1.1 模擬場地配置與模擬條件說明 4-2
4.1.2 模擬結果說明 4-3
4.2 含水層抽水試驗模擬 4-5
4.2.1 模擬場地配置 4-5
4.2.2 數值抽水試驗模擬 4-8
4.3 分析與討論 4-16
4.3.1 Theis法 4-16
4.3.2 Jacob近似法 4-18
4.3.3 最佳套配T-區段u套配 4-21
4.3.4 最佳套配T–逐步t套配 4-28
4.4 抽水結果比較 4-37

第五章 結論與建議 5-1
5.1 研究結論 5-1
5.2 研究建議 5-2

參考文獻 6-1
附錄 VSAFT2環境設定說明 A-1
1.Bachu, S., and J. R. Underschulz(1992), Regional scale porosity and permeability variations, Peace River Arch area, Alberta, Canada, AAPG Bull., 76(4), 547-562.
2.Beven, K.(1989), Changing ideas in hydrology-The case of physically-based models, J. of Hydrology, 105, 157-172.
3.Bouwer, H.(1962), Analyzing Groundwater Mound by Resistance Network, ASCE Journal of Irrigation and Drainage Engineering, 88(IR3):15-36.
4.Butler, J. J., Jr.(1988), Pumping test in non uniform aquifers: The radially symmetric case, J. Hydrol., 101, 15-30.
5.Butler, J. J., Jr.(1990), The role of pumping tests in site characterization; Some theoretical considerations, Ground Water, 28(3), 394-402.
6.Butler, J. J., Jr., and W. Z. Liu(1991), Pumping tests in non-uniform aquifers- The linear strip case, J. Hydrol., 128, 69-99.
7.Butler, J. J., Jr., and W. Z. Liu(1993), Pumping tests in nonuniform aquifers; The radially asymmetric case, Water Resour. Res., 29(2), 259-269.
8.C. M. Wu,.Tian-Chyi J. Yeh, Jungeng Zhu, Tim Hau Lee, Nien-Sheng Hsu, Chu-Hui Chen, Albert Folch Sancho(2005), Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resour. Research, 41, W09402, doi:10.1029/2004WR003717.
9.Carter, J. E.(1974), Solutions for Laminar Boundary Layers with Separation and Reattachment, AIAA Paper 74-583, Palo Alto, Calif., 1974.
10.Chow, V. T.(1952), On the determination of transmissibility and storage coefficients from pumping test data, Trans. Amer. Geophysical Union, v. 33, pp. 397-404.
11.Cooper, H. H., Jr., and C. E. Jacob(1946), A generalized graphical method for evaluating formation constants and summarizing well-field history, Trans. Amer. Geophysical Union, v. 27, pp. 526-534.
12.Dagan, G(1986)., Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale, Water Resour Res., 22(9), 120S-134S.
13.Dane, J.H., and J. W. Hopmans(2002), Water Retention and Storage, Chapter 3.3.1 Introduction, in Methods of Soil Analysis, Part 1, Physical Methods, edited by J. H. Dane and G. C. Topp, Agronomy 9, 2001; Madison, WI.
14.Darcy, H., and H. Bazin(1865), Recherches Hydrauliques, Enterprises par M. H. Darcy, Imprimerie Nationale, Paris.
15.De Marsily G.(1986), Quantitative hydrogeology: groundwater hydrology for engineers. San Diego (CA).
16.Guimera, J., and J. Carrera(1997), On the interdependence of transport and hydraulic parameters in low permeability fractured media, in Hard Rock Hydrosystems, pp. 123-133, IAHS Publ., 241.
17.Hantush, M. S.(1966), Analysis of data from pumping tests in anisotropic aquifers, J. Geophys. Res., 71(2), 421-426.
18.J.C. Herweijer and S.C. Young(1991), Use of detailed sedimentological information for the assessment of aquifer tests and tracer tests in a shallow fluvial aquifer, Proceedings of the Fifth Annual Canadian American Conference on Hydrogeology, Calgary, 18–20 September 1990, NWWA, Dublin, OH, pp. 101–115.
19.Jacquard, P., and C. Jain(1965), Permeability distribution from field pressure data, Trans. Soc. Pet. Eng., 5(4), 281–294.
20.James J. Butler, Jr.(1991), “A Stochastic Analysis of Pumping Tests in Laterally Non-uniform Media.”, Water Resour. Res., 27(9), 2401-2414.
21.Matheron, B.(1967), “Elements Pour une Theorie des Milieus poreus”, 166pp., Maisson et Cie, Paris.
22.Meier, P. M., J. Carrera, and X. Sanchez-Vila(1998), An evaluation of Jacob’s method for the interpretation of pumping tests in heterogenous formations, Water Resour. Res., 34, 1011 –1025.
23.Neuman, S. P., G. R. Walter, H. W. Bentley, J. J. Ward, and D. D. Gonzales(1984), Determination of horizontal aquifer anisotropy with three wells, Ground Water, 22(1), 66-72.
24.Neuzil, C. E.(1994), How permeable are clays and shales?, Water Resour. Res., 30(2), 145-150.
25.Papadopulos, I. S.(1965), Nonsteady flow to a well in an infinite anisotropic aquifer, in Proceedings of the Dubrovnik Symposium on the Hydrology of Fractured Rocks, pp. 21-31, Int. Assoc. of Hydrol. Sci., Washington, D. C..
26.Schad, H., and G. Teutsch(1994), Effects of the investigation scale on pumping test results in heterogeneous porous aquifers, J. Hydrol., 159, 61-77.
27.Shvidler, M. I.(1964), Filtration Flows in Heterogeneous Media (A Statistical Approach), Consultants Bureau, New York.
28.Streltsova(1988), T.D. Streltsova, Well Testing in Heterogeneous Formations, Wiley, New York p. 413.
29.Sun N Z and Yeh W W-G (1985), Identification of parameter structure in groundwater inverse problems, Warer Resow. Res. 21 869-83.
30.Theis, C. V.(1935), The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Trans. Amer. Geophysical Union, v. 16, pp. 519-524.
31.Thiem, G(1906)., Hydrologische Methoden; Gebhardt, Leipzig.
32.X Sánchez-Vila, J Carrera, JP Girardi(1996), Scale effects in transmissivity, Journal of Hydrology.
33.X. Sanchez-Vila(1997), Radially convergent flow in heterogeneous porous media, Water Resour. Res. 33(7) 1633-1641.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top