跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李金靖
研究生(外文):Jin-Jing Lee
論文名稱:蘭陽平原地下水砷之地化特徵及健康風險評估
論文名稱(外文):Geochemical Characteristics of Arsenic in Groundwater of Lanyang Plain and Human Health Risk Assessment
指導教授:劉振宇劉振宇引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:168
中文關鍵詞:地化特徵健康風險(多變數)指標克利金(MVIK)邏輯斯迴歸掃描式電子顯微鏡 (SEM)X光光電子能譜儀 (XPS)
外文關鍵詞:Arsenic (As)geochemical modellinghealth riskindicator kriginglogistic regressionscanning electron microscopy (SEM)X-ray photoelectron spectroscopy (XPS)multi-variable indicator kriging (MVIK)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
台灣東北部之蘭陽平原地下水儲量豐富,被大量抽取用在灌溉、養殖、公共、民生等多項用途;然而,地下水中含有的砷濃度卻遠超過我國的飲用水水質標準,直接飲用將有危害人體健康,也可能經由食物鏈的累積,進而對人體健體產生危害。經濟部水利署、環保署及宜蘭縣環保局為監控蘭陽平原地下水水質與水位,分別設立的監測井,水利署從淺層到深層共設置22監測站40口監測井,環保署及環保局則分設置16口及20口的近地表的淺層監測井。為了探究蘭陽平原地下水中砷釋出的機制,本研究使用這些機關2004年測得之水質監測資料進行蘭陽平原地下水的水文地質化學特徵、岩心沉積物分析、含水層的氧化還原帶的劃定及物種組成模擬。根據因子分析 (factor analysis) 與集群分析 (cluster analysis) 的結果,不同深度地下水主要受鹽化因子 (salinization factor) 與砷污染因子 (As-polluted factor) 所影響,鹽化作用分布在蘭陽平原北部沿海地區,係受到淡、海水混合養殖池水 (brackish water) 入滲所致,因為養殖用水大量抽用地下水鹽化作用已從地表逐漸影響到深層地下水。在淺層地下水中砷的發生主要是人為污染入滲引發局部的還原作用所致,而在深層地下水中砷的發生則係因沉積物中的有機物礦化作用 (organic mineralization) 時,造成還原環境而從沉積物中釋出所致。另外,對蘭陽平原中、下游沖積扇之5口地質鑽探井之149個岩心樣本中砷與鐵含量分布與岩心表面之元素化學狀態分析顯示,在海相沉積層中砷與鐵含量呈現正相關,而在非海相沉積層則幾乎無關;掃描式電子顯微鏡 (SEM) 分析顯示砷附著在無結晶型的鐵氧化物,而x光光電子能譜儀 (XPS) 進一布分析鐵的成份指出以FeOOH、FeO與Fe3O4居多,且FeS出現在較深層處,反應出還原情形增強。藉由區別分析 (discriminant analysis) 劃定出蘭陽平原各地下水含水層的氧化還原帶,還原的潛勢是從東向西、由山區向海岸增高,這趨勢與濁水溪沖積扇的潛勢相似,卻與嘉南平原相反,反應出地區性水文地質條件之差異。根據地化模擬結果指出,隨著還原潛勢的增高,主要的物種砷從As5+(氧化帶)轉為As3+(還原帶與過渡帶),Fe2+與HCO3- 則是Fe與C的主要的物種。綜合蘭楊平原地下水水文地質化學特徵、沉積物岩心分析、氧化還原潛勢及地化模擬結果可知,砷的釋出主要來自沉積物中含砷氫氧化鐵的還原性溶解,在淺層地下水中因人為污染的入滲造成局部水文地質環境的還原狀態改變而砷釋出;在深層地下水中係因沉積物中的有機物礦反應導致砷的釋出。此外,本研究亦使用宜蘭縣環保局1997-1999年家戶飲用水井的水質調查資料進行居民飲用地下水可能的健康危害風險評估,並發展快速推估飲用水井中砷濃度 ≧ 10 μg/L的預警模式,可供後續健康風險管理之用。在健康風險分析方面,經由地理統計方法¬—指標克利金-推估發現有6鄉鎮的家戶水井中砷濃度高於50 μg/L,包括礁溪鄉、宜蘭市、壯圍鄉、五結鄉、冬山鄉及羅東鎮,估算出最高的致癌風險值 (TRs) 是安全值 (10-6) 的2,400倍;進一步推估居民因攝入砷而誘發癌症的年致死數為24例 (每十萬人有5例),以鄉鎮區分:宜蘭市10例、羅東鎮5例、五結鄉3例、壯圍鄉2例及冬山鄉1例。再者,運用邏輯斯迴歸方法 (logistic regression) 發展出快速預測家戶水井中砷濃度 ≧ 10 μg/L的預警模式,預測的準確率達89.8%且所推估之地下水中砷濃度分布與運用指標克利金方法推估的結果相符,只要檢測地下水中pH值、氨氮與鐵的濃度等三項水質參數,即可立即估算出水中砷濃度 ≥ 10 μg/L的機率。由於蘭陽平原地下水是多目標使用,為建置妥適的地下水使用安全與管理,本研究綜合我國飲用水水質標準、灌溉用水水質標準與養殖用水水質條件將水利署監測井地下水質參數歸納為四種危害指標-鐵與錳危害、氮化合物危害、鹽化危害及砷危害,並運用多變數指標克利金 (multi-variable indicator kriging) 在設定不同的危害機率條件下進行評估,分析結果依四種危害指標衍生出九類危害項目,且在各含水層劃分出安全及潛在危害區域,其中,鐵與錳危害普遍出現在各含水層,並顯示出現深層地下水的安全性較淺層地下水低,中、下游沖積扇地區地下水出現多重複合性危害,安全地水水區域侷限在上游近山區、下游近蘭陽溪與下游北部近山區之部分區域。經由上述研究結果更能提供給政府機對蘭陽平原地下水多目標使用的管理與發展策略的參考。
Elevated arsenic (As) in groundwater has been found in the Lanyang plain of northeastern Taiwan. The 2004 monitoring data of groundwater quality by the WRA (22 drilling stations with 40 wells), EPA (15 wells), and EPB (16 wells) were adopted to explore hydrogeochemical characteristics, mechanisms of As release to groundwater, As speciation and redox zonation of aquifer in the Lanyang Plain. Boundaries of groundwater of various depths were affected by water salinization in fishponds and As pollution was first delineated by factor analysis and cluster analysis. Large extraction of groundwater by aquaculture was a major cause of salinization, which gradually expanded from uppermost aquifer to lower aquifer. The pollutants (TOC and NH4+-N) from human activities infiltrated to shallow groundwater, triggering reducing reactions, and release As. The presence of As in deep aquifers results from the degradations of organic matter in sediment, causing groundwater progressively be more reductive. Furthermore, redox zonation and As speciation in aquifers were evaluated by using discriminant analysis and geochemical modelling (PHREEQC). The reducing conditions tend to increase from the mountainous area to the coastal area in aquifers of the Lanyang plain. Additionally, analytical results of a total of 149 geological core samples from 5 drilling wells located at mid- and distal-fan area, indicating a positive correlation of As and Fe contents in marine sequences. Surface analysis of core sample surface were performed by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), As was adsorbed onto/copricipitated with noncrystalline Fe hydroxides. The reductive dissolution of As-rich iron oxyhydroxide was postulated to be the major release mechanism of As into groundwater. Additionally, a total of 929 residential well water quality in the Lanyang Plain surveyed from 1997 to 1999, were adopted to evaluate the potential risk to human health and population mortality. The As concentrations estimated by indicator kriging (IK) in groundwater were high ( > 50 μg/L) at six townships−Jiao-Si, Yi-Lan, Juang-Wei, Wu-Jie, Don-Shan and Lou-Don. The estimated TR values exceeded ten times of the safe value (10-6) in the As-affected townships. The highest TR values were 2,400 times higher than the safe value. Most annual mortalities due to As-induced internal cancers occurred in the Yi-Lan township (10 cases), Lou-Don (5 cases), Wu-Jei (3 cases), Jhung-Wei (2 cases) and Don-Shan (1 case), and the highest number of mortalities per year in the study area is 24 (five fatalities per 100,000 persons). Moreover, a parsimonious model was developed to predict occurrence probability of As concentration ≧10 μg/L in groundwater by logistic regression. The model parameters were based on pH, and NH4+-N and Fe concentrations which are correctively associated with As occurrence. The percentage accuracy of total correct classification for the model was 89.8%. The model can be applied to inform local resident on potential exposure risk of As-affected groundwater. Finally, a probability map of groundwater resources for multi-purpose uses (irrigation, aquaculture and drinking water) was assessed using multiple variable indicator kriging (MVIK). The model was based on strictest criteria of multi-purpose uses, and hydrochemical parameters were classified four main hazard categories – saline hazard, nitrogen hazard, As hazard and Fe-Mn hazard. Analytical results demonstrate that deep aquifer has a high hazard rating and is less safe than the shallow aquifer. The Fe-Mn hazard in Lanyang Plain groundwater is present in most aquifers, and is partially combined with other hazards, such as the nitrogen hazard and the As hazard, thereby forming other hazards. Safe and potentially hazardous groundwater regions for multi-purpose uses were delineated according to estimated probabilities of 0.25, 0.5 and 0.75. Thus, a zonal management plan based on safe groundwater use is formulated. This plan is useful to local governments in developing groundwater resources in the Lanyang Plain.
摘 要 I
Abstract Ⅲ
Contents VI
List of Tables IX
List of Figures XI
Nomenclature XVI
Chapter 1 Introduction 1
1.1 Study motivation 1
1.2 Literature review 4
1.2.1 Distribution of As in sedimentary basin 4
1.2.2 Release mechanisms of As in groundwater 5
1.2.3 Potential health risk of ingesting As-affected groundwater 7
1.3 Objectives and framework of research 9
Chapter 2 Study area 12
Chapter 3 Materials and methods 19
3.1 Materials 19
3.1.1 Groundwater quality data of monitoring wells 19
3.1.2 Groundwater quality data of residential wells 21
3.1.3 Core samples analysis 24
3.2 Methods 27
3.2.1 Factor analysis (FA) and cluster analysis (CA) 27
3.2.2 Discriminant analysis (DA) and redox zoning 29
3.2.3 Geochemical modelling and calculations 32
3.2.4 Geostatistic - Indicator kriging (IK) 34
3.2.5 Multiple-variable indictor kriging(MVIK) 36
3.2.6 Carcinogenic risk and dose response 41
3.2.7 Logistic Regression (LR) 43
Chapter 4 Results and discussion 46
4.1 Hydrogeochemical characteristics of the Lanyang Plain 46
4.1.1 Uppermost aquifer 48
4.1.2 Lower aquifers 52
4.2 Delineation of redox zonation 58
4.2.1 Classification criteria of redox zonation 58
4.2.2 Geochemical modeling and species composition 64
4.3 As contents in sedimentary sequences of Lanyang Plain 68
4.4 Possible release mechanisms of As in aquifers of Lanyang Plain 74
4.5 Potential health risk of ingestion As via drinking groundwater 81
4.5.1 Spatial distribution of As concentrations and target cancer risk 81
4.5.2 Potential health risk of ingestion of As-affected groundwater 85
4.6 A parsimonious predicting model of arsenic ≥ 10 μg/L in groundwater 89
4.6.1 Development of predicting model by logistic regression 89
4.6.2 Selected explanatory variables account for predicting model 97
4.7 Zonal management of multi-purpose groundwater use 102
4.7.1 Variogram analysis of multiple-variable integration 102
4.7.2 Delineation of hazardous regions for multi-purpose water use 105
4.7.3 Safe management of multi-purpose groundwater use 111

Chapter 5 Conclusions and suggestions 115
5.1 Conclusions 115
5.2 Suggestions 118
References 119
Appendix A 2004 groundwater quality data by the Taiwan WRA 139
Appendix B 2004 groundwater quality data by the Taiwan EPA 143
Appendix C 2004 groundwater quality data by the Yilan EPB, Taiwan 145
Appendix D 1997-1999 residential well water quality data by the Yilan EPB, Taiwan 147
Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S., Bhowmik A., 1999. Arsenic poisoning in the Gangs delta. Nature 401, 545.
Acharyya, S.K., Lahiri, S., Raymahashay, B.C., Bhowmik, A., 2000. Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ. Geol. 39, 1127-1137.
Adams, S., Titus, R., Pietersen, K., Tredoux, G., Harris, C., 2001. Hydrochemical characteristics of aquifers near Southerland in the Western Karoo, South Africa. J. Hydrol. 241, 91-103.
Aelion, C.M., Conte, B.C., 2004. Susceptibility of residential wells to VOC and nitrate contamination. Environ. Sci. Technol. 38, 1648-1653.
Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S.M.M., Bhuyian, M.A.H., 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl. Geochem. 19, 181–200.
Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M., Akai, K., 2004. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl. Geochem. 19, 215-230.
Alberto, W.D., Pilar, D.M., Valeria, A.M., Fabiana, P.S., Cecilia, H.A., Los Angeles, B.M., 2001. Pattern recognition techniques for the evalution of spatial and temporal variations in water quality. A case study: Suquǐa riverbasin (Córdoba- Argentina). Water Res. 35(12), 2881-2894.
Anawar, H.M., Komaki, K., Akai, J., Takada, J., Ishzuak, T., Takahashi, T., Yoshioka, T., Kato, K., 2002. Diagenetic control on arsenic partitioning in sediments of the Meghna River delta, Bangladesh. Environ. Geol. 41, 816-825.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Takahashi, T., Ishzuak, T., Safiulah, S., Kato, K., 2003 Geochemical occurrence of arsenic in groundwater of Bangladesh: Source and mobilization process. J. Geochem. Explor. 77, 109-131.
Anawar, H.M., Akai, J., Sakugawa, H., 2004. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54, 753-762.
Appelo, C.A.J, Weiden, M.J.V.D., Tournassat, C., Charlet, L., 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 3096-3103.
Appelo, C.A.J. and Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd ed. In G.B., A.A. Balkema, Leinden, Netherlands.
ATSDR, 1993. Toxicological profile for arsenic, update. Agency for Toxic Substances and Disease Registry, Atlanta.
Ayotte, J.D., Nolan, B.T., Nuckols, J.R., Cantor, K.P., Robinson JR., G.R., Baris, D., Hayes, L., Karagas, M., Bress, W., Silverman, D.T., Lubin, J.H., 2006. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ. Sci. Technol. 40, 3578-3585.
Bauer, M., Blodau, C., 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soil and sediments. Sci. Total Environ. 354, 179-190.
Berner, R.A., 1981. A new geochemical classification of sedimentary environment. J. Sedimentary Petrol. 51, 359-365.
Bhattacharya, P., Chatterjee, D., Jacks, G., 1997. Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, eastern India: options for safe drinking water supply. Internat. J. Water Resour. Devel. 13, 79-92.
Bi, L.L., 1996. A Preliminary Study on the Arsenic Enrichment of Groundwater in Chianan Area, Taiwan. Master Thesis. Taipei, Taiwan: Institute of Geology, National Taiwan University.
Bjerg, P.L., Rügge, K., Pedersen, J.K., Christensen, T.H., 1995. Distribution of redox-sensitive groundwater quality parameter downgradient of a landfill (Grindsted, Denmark). Environ. Sci. Technol. 29, 1387-1394.
Bone, S.E., Gonneea, M.E., Charette, M.A., 2006. Geochemical cycling of arsenic in a coastal aquifer. Environ. Sci. Technol. 40, 3273-3278.
Bose, P., and Sharma, A., 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Resour. 36, 4916–4926.
Breed, A.W., Harrison, S.T.L., Hansford, G.S., 1997. Technical note a preliminary investigation of the ferric leaching of a pyrite/arseno-pyrite flotation concentrate. Minerals Engin. 10, 1023-1030
Brown, K.G., Chen, C.J., 1995. Significance of exposure assessment to analysis of cancer risk from inorganic arsenic in drinking water in Taiwan. Risk Anal. 15, 475-484.
Castrignanò, A., Goovaerts, P., Lulli, L., Bragato, G.A., 2000. Geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 98, 95–113.
Chang, J.C., Shih, T.T., Chen, H.L., Yang, S.J., Tung, T.H., Lin, Y..F, 1995. The geomorphic study in Lan-yang area. Taipei, Taiwan: Geographical Res. 23,151-191. (in Chinese).
Chapelle, F.H., Zelibor, J.L. Jr., Grimes, D.J., Knobel, L.L., 1987. Bacteria in deep coastal Plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resour. Res. 23, 1625-1632.
Chatterjee, A.D., Das, D., Mandal, B.K., Chowdhury, T.R., Samanta, G., Chakraborty, D., 1995. Arsenic in groundwater in 6 districts of West Bengal, India—the biggest arsenic calamity in the world. A. Arsenic species in drinking water and urine of the affected people. Analyst 120, 643–650.
Chen, C.J., Chuang, Y.C., Lin, T.M., Wu, H.Y., 1985. Malignant neoplasma among residents of a blackfoot disease-endemic area in Taiwan: High arsenic artesian well water and cancers. Cancer Res. 45, 5895-5899.
Chen, C.J., Kuo, T.L., Wu, M.M., 1988. Arsenic and cancers [letter]. Lancet 1 (8582), 414-415.
Chen, C.J., Wang, C.J., 1990. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasma. Cancer Res. 50, 5470-5474.
Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L., Tai, T.Y., 1995a. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25, 53-60.
Chen, C.J., 1997. Epidemiological study of residents associated with arsenic in drinking water in the Lanyang Plain (I). Taipei, Taiwan: National Science Council, ROC. NSC86-2314-B-002-336. (in Chinese)
Chen, C.L., Hsu, L.I., Chiou, H.Y., Hsueh, Y.M., Chen, S.Y., Wu, M.M., Chen, C.J., 2004. Ingested arsenic, cigarette smoking, and lung cancer risk. JAMA 292, 2984-2990.
Chen, I.J., 2001. Geochemical Characteristics of Porewater and Sediments from Chung-hsing, Wu-jie and Long-de of I-Lan Plain, Taiwan. Master Thesis. Taipei, Taiwan: Institute of Geology, National Taiwan University.
Chen, K.P., Wu, H.Y., Wu, T.C., 1962. Epidemiologic studies on blackfoot disease in Taiwan. 3. Physicochemical characteristics of drinking water in endemic blackfoot disease area. Memoirs. Coll. Med. National Taiwan University. 8, 115-129.
Chen, S.L., Yeh, S.J., Lin, T.H., 1995b. Trace element concentration and arsening speciation in the well water of a Taiwan area with endemic blackfoot disease. Biol. Trace Element Res. 48(3), 263–274.
Chen, W.F., Liu, T.K., 2003. Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan. Environ. Geol. 44, 731-737.
Chen, W.S., 2000. Analysis of Sediments and Sedimentary Environments in Stratigraphic Correlation of the Lanyang Plain. Central Geological Survey report, the Ministry of Economic Affairs, ROC (Taiwan) (in Chinese)
Chen, Y.C., Jenny Su, H.J., Leon Guo, Y.L., Hsueh, Y.M., Smith, T.J. Ryan, L.M., Lee, M.S., Christiani, D.C., 2003. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes and Control 14, 303-310.
Cherry, J.A., Shaikh, A.U., Tallmann, D.E., Nicholson, R.V., 1979. Arsenic species as an indicator of redox conditions in ground water. J. Hydrol. 43, 373-392.
Chiang, H.C., 1994. The effect of Shrimp ponds at coastal area in Lanyang Plain on principal components of groundwater quality. Taiwanese J. Chinese Agric. Engin. 40(2), 58-68. (in Chinese)
Chilès, J.P., Delfine, P., 1999. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons Inc., New York, 283-287.
Chiou, H.Y., Hsueh, Y.M., Liaw, K.F., Horng, S.F., Chiang, M.H., Pu, Y.S., Lin, J.S.-N., Huang, C.H., Chen, C.J., 1995. Incidence of internal cancers and ingested inorganic arsenic:a seven-year follow-up study in Taiwan. Cancer Res. 55, 1296-1300.
Chiou, H.Y., Huang, W.I., Su, C.L., 1997. Dose-response relationship between stroke prevalence and ingested inorganic arsenic. Stroke 28,1717-1723
Chiou, H.Y., Chiou, S.T., Hsu, H.H., Wei, M.L, Hsu, Y.M. Chen, C.J., 2000. Risk of cancer at all sites combined and ingestion of various elements through well water among residents of the Lanyang Basin, Taiwan. New Taipei Journal of Medicine 2, 57-65.
Chiou, H.Y., Chiou, S.T., Hsu, Y.H., Chou, Y.L.,Tseng, C.H., Wei, M.L., Chen, C.J., 2001. Incidence of transitional cell carcinoma and arsenic in drinking water: A follow-up study of 8120 residents in an arseniasis-endemic area in northeastern Taiwan. Am. J. Epidemiol. 153,411-418.
Choo, K.H., Lee, H., Choi, S.J., 2005. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water. J. Membrane Sci. 267,18-26.
Chowdhury, U.K., Biswas, B.K., Chowdhury, T.R., Samanta, G., Mandal, B.K., Basu, G.C., Chanda, C.R., Lodh, D., Saha, K.C., Mukherjee, S.K., Roy, S., Kabir, S., Zaman, Q., Chakraborti, D., 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108, 393–397.
Christensen, T.H., Bjerg, P., Banwart, S.A., Jakobsen, R., Heron, G., Albrechtsen, H.J., 2000. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45, 165-241.
Davis, J.C., 1987. Statistics and Data Analysis in Geology, 2nd ed. John Wiley and Sons, New York
Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and User’s Guide; 2nd Edition. Oxford University Press, New York.
Deutsch, C.V., 2002. Geostatistical Reservoir Modeling. Oxford University Press, New York, 124-152.
Diodato, N., Ceccarelli, M., 2004. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecological Indicators 4(3):177-187.
Dixit, S., Hering, J.G., 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182-4189.
Dixit, S., Hering, J.S., 2006. Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems. Chem. Geol. 228, 6-15.
DOH, 2002. Prevention and Cure to Cancer: Liver Cancer. Department of Health, Taiwan (ROC) (http://www.doh.gov.tw/).
Farnham, I.M., Johannesson K.H., Singh A.K., Hodge, V.F., Stezenbach K.J., 2003. Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytical Chimica Acta 490(1-2), 123-138.
Frau F, Rossi A, Ardau C, Biddau R, Da Pelo S, Atzei D, Licheri C, Cannas C, Capitani C (2005) Determination of arsenic speciation in complex environmental samples by the combined use of TEM and XPS. Microchim Acta 151, 189-201
Gao, S., Goldberg, S., Herbel, M.J., Chalmers, A.T., Fujii, R., Tanji, K.K., 2006. Sorption processes affecting arsenic solubility in oxidized surface sediment from Tulare Lake Bed, California. Chem. Geol. 228, 33-43.
Gaus, I., Kinniburgh, D.G., Talbot, J.C., Webster, R., 2003. Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging. Environ. Geol. 44, 939-948.
Gaus, I., Webster, R., Kinniburgh, D.G., 2001. Scales of variation. p. 161–173. In D.G. Kinniburgh and P.L. Smedley (ed.) Arsenic contamination of groundwater in Bangladesh. Tech. Rep. WC/00/19. British Geol. Survey, Keyworth.
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, p.259 –368.
Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., N􀄂tzmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Ceochem. 20, 1409-1426.
Guo, H.R., Tseng, Y.C., 2000. Arsenic in drinking water and bladder cancer: comparison between studies based on cancer registry and death certificates. Environ. Geochem. Health 22, 83-91.
Guo, H.R., Yu, H.S., Hu, H., Monson, R.R., 2001. Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, R.O.C.). Cancer Causes and Control 12, 909-916.
Gupta, V.K., Saini, V.K., Jain, N., 2005. Adsorption of As(III) from aqueous solution by iron oxide-coated sand. J. Colloid and Interface Sci. 288, 55-60.
Halvorson, J.J., Smith, J.L., Papendick, R.I., 1996. Integration of multiple soil parameters to evaluate soil quality: a field example. Biology and Fertility of Soils 21(3), 207–214.
Han, B.C., Jeng, W.L., Chen, R.Y., Fang, G.T., Hung, T.C., Tseng, R.J., 1998. Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Arch. Environ. Contam. Toxicol. 35, 711-720.
Hansel, C.M., Benner, S.G., Nica, P., Fendorf, S., 2004. Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim. Cosmochim. Acta. 68, 3217-3229.
Hansen, H.C., Koch, C.B., Krogh, H.N., Borgaard, O.K., Sørensen, J., 1996. Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 30, 2053-2056.
Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ali, M.A., 2002. Arsenic mobility and groundwater extraction in Bengladesh. Science 298(5598), 1602-1606.
Hering, J.G., Chen, P.Y., Wilkie, J.A., Elimelech, M., 1997. Arsenic removal from drinking water during coagulation. J. Environ. Engin. 123, 800–807.
Heron, G., Christensen, T.H., 1995. Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer (Vejen, Denmark). Environ. Sci. Technol. 29, 187-192.
Hosmer, D.W. Lemeshow, S., 2000. Applied Logistic Regression, 2nd. John Wiley and Sons, New York.
Hou, X.H., Williams, J., Choy, K.L., 2006. Processing and structural characterization of porous reforming catalytic films. Thin Solid Films 495, 262-265.
Huang, C.Y., 1996. Foraminiferal analysis and stratigraphic correlation on the subsurface geology of the Choushuichi alluvial fan. p. 55–66. In Conf. on Groundwater and Hydrogeology of Choushui River Alluvial Fan. Water Resources Bureau, Taipei. (in Chinese)
Huang, J.S., 1994. The evolution and future strategies of groundwater management. Conference on groundwater resources and quality protections, Taiwan, 185-198. (in Chinese)
Huang, Y.K., Lin, K.H., Chen, H.W., Chang, C.C., Liu, C.W., Yang, M.H., Hsueh, Y.M., 2003. As species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in BFD hyperendemic areas. Food Chem. Toxicol. 41, 1491-1500.
Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., Lloyd, J.R., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68-71.
Jakobsen, R., Postma, D., 1999. Redox zoning, rate of sulfate reduction and interaction with Fe-reduction and methanogenesis in a shallow sandy aquifer, Rømø, Demark. Geochimica et Cosmochimica Acta 63, 137-151.
Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M., Wang, S.W., 2006. Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochomis mossambicus) in blackfoot disease hyperendemic areas. Environ. Sci. Technol. 40, 1707-1713.
Johnson, R.A., Wichern, D.W., 1992. Applied Multivariate Statistical Analysis, 3rd ed. Prentice-Hall International, Englewood Cliffs, New Jersey, USA.
Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, San Diego.
Juang, K.W. and Lee, D.Y., 1998. Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environ. Sci. Technol. 32, 2487–2493.
Kaiser, H.F., 1958. The varimax criteria for analytical rotation in factor analysis. Psychometrika 23(3),187-200.
Karim, M.M., 2000. Arsenic in groundwater and health problems in Bangladesh. Water Res. 34, 304–310.
Kim, J.H., Kim, R.H., Lee, J.H., Cheong, T.J., Yum, B.W., Chang, H.W., 2005. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrological Processes 19(6), 1261-1276.
Kim, M.J., Nriagu, J., Haack, S. 2002. Arsenic species and chemistry in groundwater of southeast Michigan. Environ. Pollution. 120, 379-390.
Kinniburgh, D.G., 2001. Sorption and transport. p. 211–228. In D.G. Kinniburgh and P.L. Smedley (ed.) Arsenic contamination of groundwater in Bangladesh. Tech. Rep. WC/00/19. British Geol. Survey, Keyworth
Korte, N.E., Fernando, Q., 1991. A review of arsenic(􀒉) in groundwater. Crit. Rev. Environ. Control 21, 1-31.
Lai, M.S., Hsueh, Y.M., Chen, C.J., Shyu, M.P., Chen, S.Y., Kuo, T.L., Wu, M.M., Tai, T.Y., 1994. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am. J. Epidemiol. 139, 484-492.
Lee, J.J., Jang, C.S., Wang, S.W., Liang, C.P., Liu, C.W., 2007a. Delineation of spatial redox zones using discriminant analysis and geochemical modeling in arsenic-affected alluvial aquifers. Hydrological Processes DOI: 10.1002/hyp.6884.
Lee, J.J., Jang, C.S., Wang, S.W., Liu, C.W., 2007b. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose-response model. Sci. Total Environ.384, 151-162.
Lee, J.Y. 2000, The Geochemical Analysis of Sediments. Central Geological Survey report, the Ministry of Economic Affairs, ROC (Taiwan)
Lai, M.S., Hsueh, Y.M., Chen, C.J., Shyu, M.P., Chen, S.Y., Kuo, T.L., Wu, M.M., Tai, T.Y., 1994. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am. J. Epidemiol. 139, 484-492.
Liao, C.M., and Ling, M.P., 2003. Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch. Environ. Contam. Toxicol. 45, 264-272.
Lin, J.K., Chiang, H.C., 2002. Arsenic concentration in drinking water in Lanyang area and its preliminary health risk assessment. Taipei, Taiwan: National Science council, ROC. NSC-90-2218-E-238-003.
Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313, 77-89.
Liu, C.W., Jang, C.S., Liao, C.M., 2004. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Sci. Total Environ. 321, 173-188.
Liu, C.W., Huang, F.M., Hsueh, Y.M., 2005. Revised cancer risk assessment of inorganic arsenic upon consumption of tilapia (Oreochromis mossambicus) from blackfoot disease hyperendemic areas. Bull. Environ. Contam. Toxicol. 74, 1037-1044.
Liu, C.W., Wang, S.W., Jang, C.S., Lin, K.H., 2006. Occurrence of arsenic in groundwater of the Choshui river alluvial fan, Taiwan. J. Environ. Qual. 35, 68-75.
Liu, C.W., Jang, C.S., Chen, C.P., Lin, C.N., Lou, K.L., 2007. Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modeling. Hydrological Processes DIO:10.1002/hyp.6606.
Liu, T.K., Shih, Y.R., 2003. Origin of methane from two coastal Plains: Carbon isotopes and molecular biological evidences. 18th International Radiocarbon Conference, New Zealand.
Loeppert, R.H., 1997. Arsenate, Arsenite Retention and Release in Oxide and Sulfide Dominated Systems. Technical report no.176, Texas Water Resources Institute, College Station, TX.
Love, D., Hallbauer, D., Amos, A., Hranova, R., 2004. Factor analysis as a tool in groundwater quality management : two southern African case studies. Physic and Chemistry of the Earth 29(15-18), 1135-1143.
Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259-287.
Lyngkilde, J., Christensen, T.H., 1992. Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contam. Hydrol. 10, 273-289.
Mahimairaja, S., Bolan, N.S., Adriano, D.C., Robinson, B., 2005. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron. 86, 1–82.
Mahlknecht, J., Steinich, B., Navarro de Le􀈩n, I., 2003. Groundwater chemistry and mass transfers in the independent aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ. Geol. 45(6), 781-795.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K., Tamili, D.K., Das, D., Saha, K.C., Chakraborti, D., 1996. Arsenic in groundwater in seven districts of West Bengal, India the biggest arsenic calamity in the world. Current Sci. 70, 976-986.
Manning, B.A., Goldberg, S., 1997. Arsenic(III) and Arsenic(V) adsorption on three California soils. Soils Sci. 162(12), 886-895.
Masscheleyn, P.H., Delaune, R.D., Patrick, Jr. W.H., 1991. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual. 20, 522-527.
Matalas, C.N., Reiher, J.B., 1967. Some comments on the use of factor analysis. Water Resour. Res. 3(1), 213-223.
McArthur, J.M., Ravenscroft, P., Safiullah, S., Thirlwall, M.F., 2001. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109-117.
Menard, S., 2002. Applied Logistic Regression Analysis, 2nd ed.. Sage Publication, Thousand Oaks.
Meng, X., Korfiatis, G.P., Christodoulators, C., Bang, S., 2001. Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system. Water Res. 35, 2805-2810.
Mok, W.M., Wai, C.M., 1994. Cycling and characterization. In: Nriagu, J.O. (Ed.), Arsenic in the Environment I. Wiley, New York.
Morales, K.H., Ryan, L., Kuo, T.L., Wu, M.M., Chen, C.J., 2000. Risk of internal cancers from arsenic in drinking water. Environ. Health Perspect. 108, 655-661.
National Research Council, 1999. Arsenic in Drinking Water. Natl. Acad. Press, Washington D.C..
National Research Council, 2001. Arsenic in Drinking Water: 2001 update. Natl. Acad. Press. Washington D.C..
Nickson, R., McArthur J., Burgess W., Ahmed K. M., Ravenscroft P., Rahman M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338-338.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403-413.
Nolan, B.T., Hitt, K.J., Ruddy, B.C., 2002. Probability of nitrate contamination of recently recharged groundwater in the conterminous United States. Environ. Sci. Technol. 36, 2138-2145.
Nordstrom, D.K., 2002. Public health—Worldwide occurrences of arsenic in groundwater. Science (Washington, DC) 296, 2143–2145.
Norra, S., Berner, Z.A., Agarwala, P., Wagner, F., Chandrasekharam, D., Stuben, D., 2005. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Appl. Geochem. 20, 1890-1906.
Oremland, R.S., Stoltz, J.F., 2005. Arsenic, microbes, and contaminated aquifers. Trends Microbiol. 13(2), 45-49.
Oyedele, D.J., Amusan, A.A., Obi, A.O., 1996. The use of multiple-variable indicator kriging technique for assessment of the suitability of an acid soil for maize. Trop. Agric. 73(4), 259 –263.
Parkhurst, D.L., 1995. User’s guide to PHREEQC, A Computer Model for Speciation, Reaction-Path, Advective-Transport and Inverse Geochemical Calculations. US Geological Survey Water-Resources Investigation Report, 4195-4227.
Peng, T.R., 1995. Environmental Isotopic Study (13C, 18O, 14C, D, T) on Meteroric Water and Groundwater in I-Lan Area. Doctoral Dissertation. Taipei, Taiwan: Institute of Geology, National Taiwan University.
Peters, S.C., Blum, J.D., Klaue, B., Karagas, M.R., 1999. Arsenic occurrence in New Hampshire drinking water. Environ. Sci. Technol. 33, 1328-1333.
Pierce, M.L., Moore, C.B., 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxides. Water Res. 16, 1247-1253.
Polizzotto, M.L., Harvey, C.F., Sutton, S.R., Fendorf, S., 2005. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Nat. Acad. Sci. U. S. A. 102, 18819-18823.
Postma, D., Jakobsen, R.. 1996. Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochimical et Cosmochimica Acta 60, 3169-3175.
Preez, H.H., Heath, R.G.M., Sandham, L.A., Genthe, B., 2003. Methodology for the assessment of human health risks associated with the consumption of chemical contaminated freshwater fish in South Africa. Water SA 29, 69-90.
Randall, S.R., Sherman, D.M., Ragnarsdottir, K.V., 2001. Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (r-FeOOH): Surface complexes from EXAFS spectroscopy. Geochimica et Cosmochimica Acta 65, 1015-1023.
Reghunath, R., Murthy, T.R.S., Raghavan, B.R., 2002. The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res. 36(10), 2437-2442.
Reyment, R.A., Joreskog, K.H., 1993. Applied Factor Analysis in the Natural Sciences. Cambridge University Press, New York.
Royer, R.A., Dempsey, B.A., Jeon, B.H., Burgos, W., 2004. Inhibition of biological reductive dissolution of hematite by ferrous iron. Environ. Sci. Technol. 38, 187-193.
Saisana, M., Dubois, G., Chaloulakuo, A., Spyrellis, N., 2004. Classification criteria and probability risk maps: Limitations and perspectives. Environ. Sci. Technol. 38, 1275-1281.
SAS Institute, 1999. SAS/STAT User’ Guide, Version 8. SAS Institute Inc, Cary, NC.
Shen, H.H., 2006. Linking a Life-Stage PBPK Model and Epidemiological Data to Enhance Cancer Risk Assessment of Human Exposed to Arsenicals. Master Thesis. Taipei, Taiwan: Department of Bioenvironmental Systems Engineering, National Taiwan University.
Shih, Y.R., 2003. Origin of Methane from Five Observation Sites on Chianan and I-Lan Plain: Carbon Isotopes and Molecular Biological Evidences. Master Thesis. Taipei, Taiwan: Institute of Geology, National Taiwan University.
Smedley, P.L., Edmunds, W.M., 2002. Redox patterns and trace-element behavior in the East Midlands Triassic sandstone aquifer, U.K.. Ground water 40, 44-58.
Smedley, P.L., Kinniburgh, D.G., 2002. A view of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 1093-1103.
Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., Barros, A.J., Tullio, J.O, 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem. 17, 259-284.
Smith, J.L., Halvorson, J.J., Papendick, R.I., 1993. Using multiple-variable indicator kriging for evaluating soil quality. Soil Sci. Soc. Amer. J. 57, 743 –749.
Smith, R.L., Howes, B.L., Duff, J.H., 1991. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 54, 1071-1078.
SPSS Inc., 1998. SPSS BASE 8.0- Application Guide. SPSS Inc., Chicago.
Stüben, D., Berner, Z., Chandrasekharam, D., Karmakar, J., 2003. Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl. Geochem. 18, 1417-1434.
Stumm, W., and Morgan, J.J., 1981. Aquatic Chemistry. 2nd ed. John Wiley & Sons, New York.
Suk, H.J., Lee, K.K., 1999. Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones. Ground Water 37(3), 358-366.
Swartz, C.H., Keon-Blute, N., Badruzzman, B., Ali, A., Brabander, D., Jay, J., Besancon, J., Islam, S., Hemond, H.F., Harvey, C.F., 2004. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta 68(22), 4539-4557.
Taiwan FACOA, 2004. Fisheries Year Book of Taiwan (ROC). Fisheries Agency, Council of Agriculture, Taiwan (ROC) (in Chinese)
Tekerlekopoulou, A.G., Vayenas, D.V., 2007. Ammonia, iron and manganese removal from potable water using trickling filters. Desalination 210, 225-235.
Tseng, W.P., Chen, W.Y., Sung, J.L., Chen, J.S., 1961. A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Memoire College Med., National Taiwan University 7, 1-18.
Tseng, W.P., 1977. Effects and dose-respone relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19, 109-119.
Tseng, W.P., 1985. Blackfoot disease and skin cancer in an endemic area of chronic arsenicism in Taiwan. Proc. Seminar Environ. Toxicol. Taipei, 26 March to 2 April 1985, 142-155.
Tuccillo, M.E., Cozzarelli, I.M., Herman, J.S., 1999. Iron reduction in the sediments of a hydrocarbon-contaminated aquifer. Appl. Geochem. 14, 655-667.
Tyrovola, K., Nikolaidis, N.P., Veranis, N., Kallithrakas-Kontos, N. Koulouridakis, P.E., 2006. Arsenic removal from geothermal waters with zero-valent iron-Effect of temperature, phosphate and nitrate. Water Res. 40, 2375-2386.
USEPA, 1988. Special Report on Ingested Inorganic Arsenic: Skin Cancer; Nutritional Essentiality. EPA/625/3-87/013, US Environmental Protection Agency, Risk Assessment Forum, Washington, D.C.
USEPA, 2007. Risk-based Concentration Table, Region 3; US Environmental Protection Agency, Philadelphia, PA.
van Meirvenne, M., Goovaerts, P., 2001. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma 102, 75–100
Wang, S.W., 2007. Source and Release Mechanisms of Arsenic in Sedimentary Basin of the Coastal Areas of Southwestern Taiwan. Doctoral Dissertation. Taipei, Taiwan: Department of Bioenvironmental Systems Engineering, National Taiwan Universty.
Welch, A.H. Lico, M.S., 1998. Factors controlling As and U in shallow groundwater, southern Carson Desert, Nevada. Appl. Ceochem. 13, 521-539.
Welch, A.H., Westlohn, D.B., Helsel, D.R., Wanty, R.B., 2000. Arsenic occurrence in groundwater of the United State: Occurrence and geochemistry. Ground Water 38, 589–604.
WHO, 1981. Environmental Health Criteria 18: Arsenic. World Health Organization, Switzerland.
Wiggine, B.A., Andrew, R.W., Conway, R.A., Corr, C.L., Dobratz, E.J., Dougherty, D.P., Eppard, J.R., Knupp, S.R., Limjoco, M.C., Mettenburg, J.M., Rinehardt, J.M., Sonsino, J., Torrijos, R.L., Zimmerman, M.E., 1999. Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl. Environ. Microbiol. 65, 3483-3486.
Wilkie, J.A., Hering, J.G., 1996. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surfaces 107, 97–110.
Williams, M., Fordyce, F., Paijitprapapon, A., Charoenchaisri, P., 1996. Arsenic contamination in surface drainge and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environ. Geol. 27, 16-33
Williams, G.R., Rowley, T.A., 1991. A strategy to provide retirement benefits for international transferees in a global company. Benefits & Compensation Internatl. 21, 2-7.
Worrall, F., 2001. A molecular topology approach to predicting pesticide pollution of groundwater. Environ. Sci. Technol. 35, 2282-2287.
Wu, M.M., Kuo, T.L., Hwang, Y.H., Chen, C.J, 1989. Dose-response relation between arsenic well water and mortality from cancers and vascular diseases. Am. J. Epidemiol. 130, 1123–132.
Yang, C.Y., Chang, C.C., Tsai, S.S., Chuang, H.Y., Ho, C.H., Wu, T.N., 2003. Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ. Res. 91, 29-34.
Yilan EPB, Taiwan, 1997. Survey of arsenic contents of drinking water (surface water and groundwater) in YiLan County. Environmental Protection Bureau of YiLan County, Taiwan (ROC), report. (in Chinese)
Yilan EPB, Taiwan, 1998. Survey of arsenic contents of drinking water (surface water and groundwater) in YiLan County. Environmental Protection Bureau of YiLan County, Taiwan (ROC), report. (in Chinese)
Yilan EPB, Taiwan, 1999. Survey of arsenic contents of drinking water (surface water and groundwater) in YiLan County. Environmental Protection Bureau of YiLan County, Taiwan (ROC), report. (in Chinese)
Yu, W.H., Harvey, C.M., Harvey, C.F., 2003. Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour. Res. 39, doi:10.1029/2002WR001327..
Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201-214.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊