跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游逸凡
研究生(外文):I-Fan Yu
論文名稱:台灣耕地土壤有機磷礦化作用之研究
論文名稱(外文):Study on the Mineralization of Organic Phosphorusin Agricultural Soils of Taiwan
指導教授:何聖賓
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:145
中文關鍵詞:有機磷過氯酸消解法燒灼法礦化作用速率競爭吸附陰離子交換樹脂土壤組成磷飽和指標
外文關鍵詞:organic phosphorusHClO4 Digestion methodIgnition methodthe rate of mineralizationcompetitive sorptionAnion-exchange resinsoil componentphosphorus saturation index (PSI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:883
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文針對台灣65種耕地土壤,評估及比較台灣耕地土壤總磷與有機磷測定方法之適用性;建立一簡單之方法來評估土壤原含有有機磷之礦化速率;以及探討有機磷被礦化後的無機磷在土壤中的動態等來瞭解有機磷之重要性,並探討各磷劃份與土壤性質間之相關關係以做有效性的管理建議。

有機磷和總磷的含量(r = 0.649, p < 0.001)有極顯著相關。65種土壤樣本藉由過氯酸消解法測得的平均總磷量為936 ± 866 mg P/kg;燒灼法測得的平均總磷為960 ± 833 mg P/kg。當土壤有較低的pH、黏粒量、CEC、有機碳、總磷低於500 mg P/kg及較高的游離氧化鐵、鋁時燒灼法所得的總磷量會被低估。雖然燒灼法測得的總磷比過氯酸消化法約有4.3%的低估,且變異甚廣,但前者可伴隨測得土壤有機磷,因此值得更進一步的研究並採納為常規步驟。透過複迴歸模式可知土壤總磷量和土壤性質彼此間之關係可藉由有機碳及有機磷含量較為精確的計算出總磷量(TPIgnition = 159 + 13.3 OC + 2.57 OP;TPHClO4 = 202 +13.9 OC + 2.51 OP)。

以常用的550℃燒灼法結果來評估65種土壤之有機磷平均為201 ± 159 mg P/kg。在燒灼法的比較中,燒灼溫度降低(450℃)在土壤有較低的游離氧化鐵、鋁、CEC,較高的有機碳及總磷大於500 mg P/kg時會造成有機磷的低估,而相同溫度下,改用濃度低的鹽酸萃取會造成無機磷的低估。

礦化過程中所釋放的無機磷之所以難以正確的測定與探討,乃因礦化磷被釋放後往往就迅速被吸附。我們發展一新方法,將孵育過程中會產生的無機磷溶解作用以及溶液磷生物固定化作用和有機磷礦化作用的總和分開來,以評估每個土壤的磷礦化速率。試驗設計中,一組為控制組,另一組則殺菌阻止微生物活性。所有的土壤樣品和陰離子樹脂混合均勻後,在通氣狀態下孵育,之後測定兩處理中的樹脂磷差異值則定義為磷的礦化速率。選定的12種土壤中,磷礦化速率平均分佈在0 - 0.18 mg/kg/day,無機磷溶解量則為0.02- 0.71 mg/kg/day。若土壤有機磷高於100 mg/kg的前提下,若土壤磷飽和指標(PSI)> 0.15,會得到較高的礦化磷。

各吸附體吸附磷的等溫吸附曲線約略符合Langmuir方程式,其最大吸附量依序為Dowex 1X8陰離子交換樹脂 > Dowex MSA 大孔隙陰離子交換樹脂 > 針鐵礦 > 赤鐵礦 > 水鋁氧。土壤背景溶液濃度的改變會改變樹脂磷的最大吸附量,當背景溶液濃度越高,益發增加溶液中的陰離子濃度(過氯酸根),進而與磷酸根競爭而降低了樹脂之磷最大吸附量,但會減緩反應中溶液pH值下降的幅度。

利用實驗室自行設計之三腔反應器進行離子交換樹脂與各吸附體對磷酸根離子的競爭性吸附。而吸附體親和力的不同,即使初始時控制競爭者吸附的能力相同,但最後所吸附的含量卻有所差異。除了針鐵礦、赤鐵礦等氧化鐵礦物競爭能力比樹脂高外,其餘的氧化鋁及土壤競爭能力比樹脂低。由於樹脂與植物根的吸收行為有良好相關,藉由這樣的結果,可推估植物根系從水溶液中吸收無機磷的能力比土壤組成份高。
Mineralization of soil organic P (Po) plays an important role in soil P cycling. No direct methods presently exist enabling the determination of the organic phosphorus content of soil. Organic P is determined indirectly by either ignition or extraction methods. The Organic phosphorus is determined by measuring the differences in the extractable phosphorus in soil samples before and after treatment.

Organic phosphorus and total phosphorus are highly positive related. The average total phosphorus of 65 soils by HClO4 digestion method is 936 ± 866 mg p/kg. The result of using Ignition method is 960 ± 833 mg p/kg. These results showed that in soils with lower pH, clay contents, CEC values, and organic carbon contents, total P contents lower than 500 mg/kg and with higher amounts of CBD extractable Fe and Al, the total P contents obtained by the ignition method tended to be underestimated. Although the average amount of total P obtained by the ignition method was 4.3% lower than that obtained by the HClO4 method and variation was rather wide, the former method can concomitant use for the determination of soil organic P and is thus worthy of further studying and adopted as a routine procedure. On the other hand, stepwise regression selection procedure was adopted to relate the amount of total P content in soils to the selected soil properties. The results were as follows: TPIgnition = 159 + 13.3 OC + 2.57 OP; TPHClO4 = 202 +13.9 OC + 2.51 OP。

The average organic phosphorus for 65 soils is 201 ± 159 mg P/kg by ignition method at 550℃. Compare with the ignition method of 550℃, 450℃ or HCl extractant has tendency to underestimate the result.

Rates of P mineralization on native soil are poorly known due to the limitations of available analytical techniques. Quantitative information on the release of available inorganic P by this process is difficult to obtain because any mineralized P gets rapidly sorbed. We developed a new method to estimate P mineralization rate to each soil in order to separate the processes of mineral P solubilization and organic P mineralization and get rid of solution P immobilization. One set of soils was retained as control; the other set was sterilized to stop microbial activity. All sets of samples were then incubated with anion exchange resin mixed evenly under aerobic conditions. Difference in resin P among the two treatments was used to estimate P mineralization rates. Rates of P mineralization ranged from 0 - 0.18 mg/kg/day and the rates of solubilization of mineral P were 0.02 - 0.71 mg/kg/day for the twelve studied soils. If the value of phosphorus saturation index (PSI) is higher than 0.15 might cause the higher mineralized P. This new method is safer and simpler in operation than isotopic techniques.

The Sorption isotherms in soils and Fe- Al- oxides could be well described by the Langmuir equation. The phosphorus sorption maxima of all competitors decreased in the order Dowex 1X8 Resin > Dowex MSA Resin > Goethite > Hematite > Gibbsite. The adsorption of phosphorus by anion resins were affected by increasing the concentration of the background solution.

Competition in sorption of inorganic phosphorus between anion exchange resins and soil components was studied by using a special designed tri-chamber apparatus. Other than Goethite and Hematite, competitive sorption of Al2O3 and soils are lower than resin. With such a result, we can find the plant root system from the soil solution might have more ability to absorb the inorganic phosphorus than the soil.
口試委員會審定書____________________________________________________i
誌謝________________________________________________________________ii
中文摘要____________________________________________________________iii
英文摘要____________________________________________________________v
目錄________________________________________________________________vii
表次________________________________________________________________viii
圖次________________________________________________________________x
第一章 前言_____________________________________________________1
第二章 前人研究_________________________________________________3
第一節 土壤有機磷的測定與比較_______________________________3
第二節 礦化作用之探討______________________________________11
第三節 有機磷礦化後在土壤之動態____________________________24
第三章 材料與方法______________________________________________28
第一節 土壤之選取__________________________________________28
第二節 土壤理化性質分析____________________________________32
第三節 土壤磷之分析________________________________________35
第四節 土壤礦化速率________________________________________38
第五節 有機磷礦化後在土壤之動態____________________________43
第四章 結果與討論______________________________________________50
第一節 供試土壤之土壤化學物理性質__________________________50
第二節 土壤磷之探討________________________________________56
第三節 礦化作用之探討______________________________________78
第四節 有機磷礦化後在土壤之動態___________________________107
第五章 總結___________________________________________________122
第六章 參考文獻_______________________________________________124
石粵軍。1994。土壤生物有效性磷指標之研究。國立台灣大學農化研究所碩士論文。
林家棻、張愛華、曾肇清。1966。土壤不同型態磷含量與作物對於磷肥效應之關係。中華農學會報 新第六十九期:19-30。
林家棻。1967。台灣省農田肥力測定。台灣省農試所報告第28號。
林紫慧。1989。評估氧化鐵濾紙法對台灣土壤有效磷抽出之適用性。國立台灣大學農化研究所碩士論文 。
席連之、張守敬。1951。台灣省土壤調查及肥力測定報告書。台灣肥料公司叢刊第五種,238頁。
張守敬、朱文光。1960。台灣土壤中磷之化合態。中華農學會報新第三十期: 1-7。
張夢仁。1995。陰離子交換樹脂與部分土壤組成份對無機磷的競爭性吸持。國立台灣大學農化研究所碩士論文。
郭鴻裕。1992。台灣地區酸性土壤之分佈及其利用現況。酸性土壤之特性及其改良研討會論文集:3-1至3-7。
陳仁炫。1993。台灣強酸性土壤磷吸附特性之研究。中國農業化學誌。31: 399-411。
陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌 33:533-549。
陳尊賢。1986。台灣地區農耕土系之初步新土壤分類-電腦建檔與查詢(未發表資料)。
陳尊賢。1992。台灣農地酸性土壤之特性及其分類。酸性土壤之特性及其改良研討會論文集:2-1至2-18。
蘇楠榮。1978。台灣土壤之肥力分佈。地球化學資源極其利用研討會報告:83-89。
Acquaye, D.K. 1963. Some significance of soil organic phosphorus mineralization in the phosphorus nutrition of cocoa in Ghana. Plant Soil 19: 65-80.
Adams, M.A. 1992. Phosphatase activity and phosphorus fractions in Karri (Eucalyptus diversicolor F. Muell.) forest soils. Biol. Fertil. Soils 14: 200-204.
Adams, M.A., and L.T. Byrne. 1989. 31P-NMR analysis of phosphorus compounds in extracts of surface soils from selected Karri (Eucalyptus diversicolor F. Muell.) forests. Soil Biol. Biochem. 21: 523-528.
Aldrich, D.G., and J.R. Buchanan. 1954. Phosphorus content of soils and their parent rocks in Southern California. Soil Sci. 77: 369-376.
Amer, F., D.R. Bouldin, L.A. Black, and F.R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P equilibration. Plant Soil 6: 391-408.
Anderson, G. 1960. Factors affecting the estimation of phosphate esters in soil. J. Sci. Fd. Agric. 11: 497-503.
Anderson, G. 1980. The role of phosphorus in agriculture, In: Khasawneh, F.E., E.C. Sample, E.J. Kamprath (eds.) ASA-CSSA-SSSA, Madison, Wisconsin, USA. pp. 411-431.
Anderson, G., E.G. Williams, and J.O. Moir. 1974. A comparison of the sorption of inorganic orthophosphate and inositol hexaphosphate by six acid soils. J. Soil Sci. 25: 51-62.
Bache, B.W., and N.E. Rogers. 1970. Soil phosphate values in relation to phosphate supply to plant from some Nigerian soils. J. Agric. Sci. (Cambri.) 74: 383-390.
Balasubramanian, V., and Kanehiro, Y. 1978. Surface chemistry of the Hydrandepts and ite relation to nitrate adsorption as affected by profile depth and dehydration. J. Soil Sci. 29: 47-57.
Baligar, V.E., and O.L. Bennett. 1986. Outlook on fertilizer use efficiency in the tropics. Fertilizer Research 10: 83-96.
Ballard, R., and J.G.A. Fiskell. 1974. Phosphorus retention in coastal plain forest soils: I. Relationship to soil properties. Soil Sci. Soc. Am. Proc. 38:250-255.
Barber, S.A. 1962. A diffusion and mass flow concept of soil nutrient availability. Soil Sci. 93: 39-49.
Barber, S.A. 1984. Soil Nutrients Bioavailability: A mechanistic Approach. John Wiley & Sons, New York.
Barry, G.A., P.J. Chudek., E.K. Best, and P.W. Moody. 1995. Estimating sludge application rates to land based on heavy metal and phosphorus sorption characteristics on soil. War. Res. Vol. 29, No. 9. pp. 2031-2034.
Bartlett, R., and B. James. 1980. Studying dried, stored soil samples-some pitfalls. Soil Sci. Soc. Am. J. 44:721-724.
Beck,T., and H. Poschenrieder. 1963. Experiments on the effect of toluene on the soil microflora. Plant Soil 18: 346-357.
Beckett, P.H.T., and R.E. White. 1964. Studies on the phosphate potential of soils. III. The pool of labile inorganic phosphorate. Plant Soil 21: 253-282.
Birch, H.F. 1958. The effect soil drying on humus decomposition and nitrogen availability. Plant Soil 10: 9-31.
Birch, H.F. 1964. Mineralization of plant nitrogen following alternate wet and dry conditions. Plant soil 20: 43-49.
Birch, H.F., and M.T. Friend. 1961. Resistance of humus to decomposition. Nature 191: 731-732.
Bishop, M., A.C. Chang, and R.W.K. Lee. 1994. Enzymatic mineralization of organic phosphorus in a volcanic soil of Chile. Soil Sci. 157: 238-243.
Bolan, N.S., N.J. Borrow, and A.M. Posner. 1985. Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides. J. Soil Sci. 36: 187-197.
Bonde, T.A., and T. Rosswall. 1987. Seasonal variation of potentially mineralizable nitrogen in four cropping systems. Soil Sci. Soc. Am. J. 51: 1508-1514.
Bonmati, M., B. Ceccanti, and P. Nannipieri. 1991. Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biol. Biochem. 23: 391-396.
Borggaard, O.K., S.S. Jorgensen, J.P. Moberg, and B. Raben-Lange. 1990. Influence of organic matter on phosphate adsorption by aluminum and iron oxides in study soils. J. Soil Sci. 41: 443-449.
Borggarrd, O.K. 1983. Effect of surface area and mineralogy of iron oxides on their surface charge and anion adsorption properties. Clay Clay Miner. 31: 230-232.
Borggarrd, O.K. 1983. The influence of iron oxides on phosphate adsorption by soil. J. Soil Sci. 34:333-341.
Bornemisza, E., and K. Igue. 1967. Comparison of three methods for determining organic phosphorus in Costa Rican soils. Soil Sci. 103: 347-353.
Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464-465.
Bowama, R.A., S.R. Olsen, and F.S. Watanabe. 1978. Greenhouse evaluation of residual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. Soc. Am. J. 42:451-454.
Bowman, B.T., R.L. Thomas, and D.E. Elrick. 1967. The movement of phytic acid in soil cores. Soil Sci. Soc. Am. Proc. 31: 477-481.
Bowman, R.A. 1989. A sequential extraction procedure with concentrated sulfuric acid and dilute base for soil organic phosphorus. Soil Sci. Soc. Am. J. 53: 362-366.
Bowman, R.A., and J.O. Moir. 1993. Basic EDTA as an extractant for soil organic phosphorus. Soil Sci. Soc. Am. J. 57: 1516-1518.
Bowman, R.A., and C.V. Cole. 1978a. An exploratory method for fractionation of organic phosphorus for grassland soils. Soil Sci. 125: 95-101.
Bowman, R.A., and C.V. Cole. 1978b. Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extration. Soil Sci. 125: 49-54.
Bowman, R.A., and D.J. Savory. 1992. Phosphorus distribution on calcareous soil profiles of the central plains. Soil Sci. Soc. Am. J. 56: 423-426.
Brady, N.C., and R.R. Weil. 2002. The Nature and Properties of Soils, 13th ed. Prentice Hall, New Jersey.
Brams, E. 1973. Soil organic matter and phosphorus relationships under tropical forests. Plant and Soil 39: 465-468.
Brock., T.D., M.T. Madigan, J.M. Martinko, and J. Parker. 1994. Biology of microorganisms, 7th ed., Preston, L.M. Lavkulich, Can. J. Forest Res. 30: 1714.
Broomfield, S.M. 1965. Studies of the relative importance of iron and aluminum in the sorption of phosphate by some Australia soils. Aust. J. Soil Res. 3: 31-44.
Cabrera, M.L., and D.E. Kissel. 1988. Evaluation of a method to predict nitrogen mineralized from soil organic matter under field condition. Soil Sci. Soc. Am. J. 52: 1027-1032.
Cade-Menun, B.J., and C.M. Preston. 1996. A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci. 161: 770-785.
Campbell, C.A., R.J.K. Myers, and K.L. Weier. 1981. Potentially mineralizable nitrogen, decomposition rates and their relationship to temperature for five Queensland soils. Aust. J. Soil Res. 19: 323-332.
Celi., L., S. Lamacchia, F.A. Marsan, and E. Barberis. 1999. Interaction of inositol hexaphosphate on clays: Adsorption and charging phenomena. Soil Sci. 164: 574-585.
Chang, S.C., and M.L. Jackson. 1957. Fractionating of soil phosphorus. Soil Sci. 84: 133-144.
Chefetz, B., Z. Kerem, Y. Chen, and Y. Hadar. 1998. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste. Soil Biol. Biochem. 30: 1091-1098.
Clarholm, M. 1993. Microbial biomass P, labile P and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol. Fertil. Soils 16: 287-292.
Condron, L.M., J.O. Moir, H. Tissen, and J.W.B. Stewart. 1990. Critical evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci. Soc. Am. J. 54: 1261-1266.
Cooke, I.J., and J. Hislop. 1963. Use of anion exchange resin for the assessment of available soil phosphate. Soil Sci. 96: 308-312.
Corbridge, D.E.C. 2000. Phosphorus 2000. Chemistry, Biochemistry and Technology, Elsevier, New York, USA.
Cosgrove, D.J. 1967. Metabolism of organic phosphates in soil. McLaren, A.D., and G.H. Peterson. (eds.) In Soil Biochemistry. vol. 1. USA7 Marcel Dekker, New York. pp. 216–28.
Cosgrove, D.J. 1980. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. The Netherlands7 Elsevier, Amsterdam.
Dahnke, W.G., J.L. Malcolm, and M. Menendez. 1964. Phosphorus fractions in selected soil profiles of E1 Salvador as related to their development. Soil Sci. 98: 33-38.
Dalal, R.C. 1977. Soil organic phosphorus. Adv. Agron. 29: 85-117.
Dalal, R.C. 1979. Mineralization of carbon and phosphorus from carbon-14 and phosphorus-32 labeled plant material added to soil. Soil Sci. Soc. Am. J. 43: 913-916.
Dalal, R.C., and E.G. Hallsworth. 1976. Evaluation of the parameters of soil phosphorus availability factors in predicting yield respond and phosphorus uptake. Soil Sci. Soc. Am. Proc. 40: 541-546.
Dayton., E.A., and N.T. Basta. 2005. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals. J. Environ. Qual. 34:1112-1118.
Diaz, O.A., D.L. Anderson, and E.A. Hanlon. 1993. Phosphorus mineralization from histosols of the everglades agricultural area. Soil Sci. 156: 178-185.
Dick, W.A., and M.A. Tabatabai. 1977. An alkaline oxidation method for determination of total phosphorus in soils. Soil Sci. Soc. Am. J. 41: 511-514.
Dick, W.A., and M.A. Tabatabai. 1984. Kinetic parameters of phosphatases in soils and organic waste materials. Soil Sci. 137: 7–15.
Dick, W.A., L. Cheng, and P. Wang. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32: 1915–1919
Dissing Nielsen J. and F. Eiland. 1980. Investigations on the relationship between P fertility, phosphatase activity and ATP content in soil. Plant Soil 57: 95-103.
Doerge, T. and E.H. Gardner. 1978. Soil testing for available P in southwest Oregon. In: In Proc. 29th Ann. Northwest Fertilizer Conf., Beaverton, OR. pp. 143-152.
Dormaar, J.F. 1972. Seasonal pattern of soil organic phosphorus. Can. J. Soil Sci. 52: 107-112.
Dormaar, J.F., and G.R. Webster. 1964. Losses inherent in ignition procedures for determining total organic phosphorus. Can. J. Soil Sci. 44:1-6.
Eid, M.T., C.A. Black, and O. Kempthorne. 1951. Importance of soil organic and inorganic phosphorus to plant growth at low and high soil temperatures. Soil Sci. 71: 361-370.
Eidt, R.C. 1984. Advances in abandoned settlement analysis: application to prehistoric Anthrosols in Columbia, South America, university of Wisconsin-Milwaukee, center for Latin America, Milwaukee.
Eivazi, F., and M.A. Tabatabai. 1977. Phosphatases in soils. Soil Biol. Biochem. 9: 167-172.
Ellert, B.H., and J.R. Bettany. 1988. Comparison of kinetic models for describing net sulfur and nitrogen mineralization. Soil Sci. Soc. Am. J. 52: 1692-1702.
Elrashidi, M.A., A.Van Diest, and A.H. Eldamaty. 1975. Phosphorus determination in highly calcareous soils by the use of an anion exchange resin. Plant Soil 42: 273-286.
Enwezor, W.O. 1967. Significance of the C: organic P ratio in the mineralization of soil organic phosphorus. Soil Sci. 103: 62-66.
Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. Dept. of Soil Sci. and Plant Nutrition, Univ. of Calif., Davis, USA.
Evans, J.R.A. 1985. The adsorption of inorganic phosphate by a sandy soil as influenced by dissolved organic compounds. Soil Sci. 140: 251-255.
Floate, M.J.S. 1970. Decomposition of organic materials from hill soil and pastures. IV. The effect of temperature on the mineralization of carbon, nitrogen and phosphorus from plant materials and seep faces. Soil Biol. Biochem. 2: 275-283.
Floate, M.J.S. 1970. Mineralization of nitrogen and phosphorus from organic materials of plant and animal origin and its significance in the nutrient cycle in grazed upland and hill soils. J. Br. Grassld. Soc. 25: 295-302.
Fox, R.L., and E.J. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc. 34: 902-907.
Frazer, D.W., J.G. McColl, and R.F. Powers. 1990. Soil nitrogen mineralization in a clearcutting chronosequence in a northern California conifer forest. Soil Sci. Soc. Am. J. 54: 1145-1152.
Fried, M. 1957. Measurement of plant nutrient supply of soil by radioative isotops. In C.L. Comar. (ed.) Atomic energy and Agriculture Am. Assoc. Adv. Sci., Washington, DC. pp. 1-18.
Frossard, E., D. López-Hernández and M.Brossard. 1996. Can isotopic exchange kinetics give valuable information on the rate of mineralization of organic phosphorus in soils? Soil Biol. Biochem. 28: 857-864.
Fyles, J.W., and W.B. McGill. 1987. Nitrogen mineralization in forest profiles from central Alberta. Can. J. For. Res. 17: 242-249.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. In A. Klute. (ed.) Methods of soil analysis, Part 1. 2nd ed. ASA and SSSA, Madison, WI. pp. 383-411.
Gelderman, R.H., W.C. Dahnke, and L. Swenson. 1988. Correlation of several N indices for wheat. Commun. Soil Sci. Plant Anal. 19: 755-772.
Gerke, J. 1993. Aluminum complexation by humic substances and aluminum species in the soil solution. Geoderma 63: 165-175.
Gerke. J. 1992. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH-evidence for Humic- Fe- (Al-) phosphate complexes. Commun. Soil Sci. Plant Anal. 23: 601-612.
Goring, C.A.I. 1955. Biological transformations of phosphorus in soil. II. Factors and affecting synthesis of organic phosphorus. Plant Soil 6: 26-37.
Gressel, N., J.G. McColl, C.M. Preston, R.H. Newman, R.F. Powers. 1996. Linkages between Phosphorus Transformations and Carbon Decomposition in a Forest Soil. Biochemistry 33: 97-123.
Grierson, P.F., N.B. Comerford, and E.J. Jokela. 1998. Phosphorus mineralization kinetics and response of microbial phosphorus to wetting and drying in a Florida Spodosol. Soil Biol. Biochem. 30:1323-1331.
Grierson, P.F., N.B. Comerford, and E.J. Jokela. 1999. Phosphorus mineralization and microbial biomass in a Florida Spodosol: effects of water potential, temperature and fertilizer application. Biol. Fertil. Soils 28: 244-252.
Griffin, G.F., and A.F. Laine. 1983. Nitrogen mineralization in grassland soils. In: Gaborick, N., V. Krajcovic, M. Zimkora. (eds.) Proc. 13th. General Meeting of the European Grassland Federation, Vol II. Banscka Bystrica, Ttslechoslovakia. pp. 25-32.
Griffin, R.A., and J.J. Jurinak. 1974. Kinetics of phosphate interaction with calcite. Soil Sci. Soc.Am. Proc. 38: 75-79.
Grunes, D.L., H.J. Haas, and S.H. Shih. 1955. Effect of dryland cropping on available phosphorus of Cheyenne fine sandy loam. Soil Sci. 80: 127-138.
Gunary, D., and C.D. Sutton. 1967. Soil factors affecting plant uptake of phosphate. J. Soil Sci. 18: 167-173.
Haas, H.J., D.L. Grunes, and G.A. Reichman. 1961. Phosphorus changes in Great Plains soils as influenced by cropping and manure applications. Soil Sci. Soc. Am. Proc. 25: 215-2180.
Halstead, R.L., J.M. Lapensee, and K.C. Ivarson. 1963. Mineralization of soil organic phosphorus with particular reference to the effect of lime. Can. J. Soil Sci. 43: 97-106.
Halstead, R.L., G. Anderson, and N.M. Scott. 1966. Extraction of organic matter from soils by means of ultrasonic dispersion in aqueous acetylacetone. Nature 211: 1430.
Hance, R.J., and G.A. Anderson. 1962. A comparative study of methods of estimating soil organic phosphate. J. Soil Sci. 13:225-230.
Hannapel, R.J., W.H. Fuller, and R.H. Fox. 1964. Phosphorus Movement in a calcareous soil: II. Soil microbial activity and organic phosphorus movement. Soil Sci. 97: 421-427.
Harrison, A.F. 1987. Soil organic phosphorus: a review of world literature. C.A.B. International, Wallingford, UK.
Harrison, A.F. 1982. Labile organic phosphorus mineralization in relationship to soil properties. Soil Biol. Biochem 14: 343-351
Harrison, A.F. 1983. Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biol. Biochem. 15: 93-99.
Harrison, A.F. 1985. Effects of environment and management on phosphorus cycling in terrestrial ecosystem. J. Enviro. Manage 20: 163-179.
Haynes, R.J. 1982. Effects of liming on phosphate availability in acid soils. Acritical review. Plant Soil 68: 289-308.
Haynes, R.J., and R.S. Swift. 1985. Effects of air-drying on the adsorption and desorption of phosphate and levels of extractable phosphate in a group of New Zealand soils. Geoderma 35: 145-157.
Hedley, M.J., J.W.B. Stewart, and B.S. Chauhan. 1982. Changes in inorganic soil phosphorus fractions induced by cultivation practices and laboratory incubations. Soil Sci. Soc. Am. J. 46: 970-976.
Hendricks, D.M., and L.D. Whittig. 1968. Andesite weathering II. Geochemical changes from Andesite to Saprolite. J. Soil Sci. 19: 147-153.
Herbien, S.A., and Neal, J.L. 1990. Soil pH and phosphatase activity. Commun. Soil Sci. Plant Anal. 21: 439-456.
Hilderbrand, R.L. 1983. The Role of phosphonates in living systems, CRC Press, Boca Raton, Florida, USA.
Ho, I., 1979. Acid phosphatase activity in forest soil. For. Sci. 25: 567-568.
Imai, H., K.W.T. Goulding, and O. Talibudeen. 1981. Phosphate adsorption in allophonic soils. J. Soil Sci. 32: 555-570.
Islam, A., and B. Ahmed. 1973. Distribution of inositol phosphate, phospholipids and nucleic acids and mineralization of inositol phosphates in some Bangladesh soils. J. Soil Sci. 24: 193-198.
Islam, A., and R. Mandal. 1967. Amounts and mineralization of organic phosphorus compounds and derivative in some surface soils of Bangladesh. Geoderma 17: 57-68.
Islam, A., R. Mandal, and K.T. Osman. 1979. Direct adsorption of organic phosphate by rice and just plants. Plant Soil 53: 49-54.
Ivanoff, D.B., K.R. Reddy, and S. Robinson. 1998. Chemical fractionation of organic phosphorus in selected Histosols. Soil Sci. 163: 36-45.
Ivanov, P., and D. Sauerbeck. 1971. Fixation, decomposition and availability of phytic-acid phosphorus in soil. Z. pflanzenernahr, Dung. Bodenk. 129: 113-125.
Iyamuremye, F., and R.P. Dick. 1996. Organic amendments and phosphorus sorption by soils. Advances in Agronomy 56: 139-185.
Jackman, R.H., and C.A. Black. 1952. Hydrolysis of phytate phosphorus in soils. Soil Sci. 73: 167-171.
Jackson, M.L. 1958. Soil Chemical analysis. Prentice-Hill, Inc., Englewood cliffs, N.J.
Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil measurement and turnover. In Paul, E.A.and J.N. Ladd (ed.) Soil Biochemistry. Marcell Dekker, Inc., New York. pp. 415-471.
John, M.K., P.K. Sopourt, and C.C. Kelley. 1965. The distribution of organic phosphorus in British Colombia soil and its relationship to soil characteristics. Can. J. Soil Sci. 45: 87-95.
Jonasson, S., M. Havström, M. Jensen, T.V. Callaghan. 1993. In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia 95: 179-186.
Jones, C.A., C.V. Cole, A.N. Sharpley, and J.R. Williams. 1984. A simplified soil and plant phosphorus model, I. Documentation. Soil Sci. Soc. Am. J. 48: 800-805.
Juma, N.G. 1976. Phosphatase activity of soils and of corn and soybean roots. M.S. Thesis. Iowa State University, Ames.
Juma, N.G., and M.A. Tabatabai. 1977. Effects of trace elements on phosphate activity in soils. Soil Sci. Soc. Am. J. 41: 343-346.
Juma, N.G., and M.A. Tabatabai. 1978. Distribution of phosphomonoesterases in soils. Soil Sci. 126: 101-108.
Kaila, A. 1962. Determination of total organic phosphorus in samples of mineral soils. J. Sci. Agric. Soc. Finland 34: 187-196.
Kara, D., C. Özsavaşçi, and M. Alkan. 1997. Investigation of suitable digestion methods for the determination of total phosphorus in soils. Talanta 44: 2027-2032.
Kellogg, L. E., S. D. Bridgham, and D. 2006. A Comparison of Four Methods of Measuring Gross Phosphorus Mineralization. Soil Sci. Soc. Am. J. 70:1349-1358.
Klages, M.G., R.A. Olsen, and V.A. Aaby. 1988. Relationship of phosphorus isotherms to NaHCO3-extractable phosphorus as affected by soil properties. Soil Sci. 146: 85-91.
Koopmans, G.F., W.J. Chardon, P.A.I. Ehlert, J.Dolfing, R.A.A. Suurs, O. Oenema, and W.H. van Rjemsdijk. 2004. Phosphorus availability for plant uptake in a phosphorus-enriched noncalcareous sandy soil. J. Environ. Qual. 33: 965-975.
Korkisch, J. 1989. Handbook of ion exchange resins: their application to inorganic analytical chemistry. Vol. I. CRC Press Inc, Florida.
Kubota, T. 1972. Aggregate formation of allophonic soils: effect of drying on the dispersion of the soils. Soil Sci. Plant Nutr. 18:79-87.
Kuo, S. 1990. Phosphate sorption implications on phosphate soil tests and uptake by corn. Soil Sci. Soc. Am. J. 54: 131-135.
Lajtha, K., and S.H. Bloomer. 1988. Factors affecting phosphate sorption retention in desert ecosystem. Soil Sci. 146: 160-167.
Legg, J.O., and C.A. Black. 1955. Determination of organic phosphorus in soils: II. Ignition method. Soil Sci. Soc. Am. Proc. 19: 139-143.
Lin, C.F., A.H. Chang, and W.K. Wu. 1977. Grain yield and P-uptake of rice plant as related to P-fraction in the soils of Central Taiwan. J. Agric. Res. China 26: 25-41. (In Chinese)
Linn, D.M., and J.W. Doran. 1984. Effect of water filled pore space on CO2 and N2O production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48: 1267-1272.
Mafongoya, P.L., P. Barak, and J.D. Reed. 2000. Carbon, nitrogen and phosphorus mineralization of tree leaves and manure. Biol. Fertil. Soils 30:298–305.
Magid, J., H.Tiessen, and L.M. Condron. 1996. Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In Piccolo, A. (ed.) Humic substances in terrestrial ecosystems. Elsevier Science. Amsterdam. pp. 429-466.
Mandal, R., and A. Islam. 1977/1978. Mineralization of inositol penta- and hexaphosphates in some soils of Bangladesh. J. Biol. Sci. 6/7: 37-42.
Martin, J.K., and B. Cartwright. 1971. The comparative plant availability of 32PO4 added to soils. Commun. Soil Sci. Plant Anal. 2: 375-381.
Mathur, S.R., J.I. Macdougall, and M. McGrath. 1980. Levels of activities of some carbohydrase, protease, lipase, and phosphatase in organic soils of differing copper content. Soil Sci. 129: 376-385.
Mattingly, G.E.G. 1970. Total phosphorus contents of soils by perchloric acid digestion and sodium bicarbonate fusion. J. Agric. Sci. (Cambridge) 74: 79-82.
McCall, W.W., J.F. Davis, and K. Lawton. 1956. A study of the effects of mineral phosphates upon the organic phosphorus content of organic soil. Soil Sci. Soc. Am. Proc. 20: 81-83.
McGill, W.B., and C.V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26: 267-286.
McKeague, J.A., and J.H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differenting various classes of soils. Can. J. Soil Sci. 46: 13-22.
McKelvie, I.D. 2005. Separation, preconcentration, and speciation of organic phosphorus in environment samples. In Turner, B. L., E. Frossard, and D. S. Baldwin (eds.) Organic phosphorus in the environment, CABI Publishing, Wallingford, UK. pp. 1-20.
McKercher, R.B., and G. Anderson. 1989. Organic phosphorus sorption by neutral and basic soils. Comm. Soil Sci. Plant Anal. 20: 723-732.
McLaughlin, J.R., J.C. Ryden, and J.K. Syers. 1981. Sorption of inorganic phosphate by iron- and aluminium- containing components. J. Soil Soc. 32: 365-377.
Mehra, O.P., and M.L. Jackson. 1960. Iron Oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. In Clays and Clay Minerals, Proc. 7th Conf. Natl. Acad. Soil. –Natl. Res. Council Publ. pp. 317-327.
Mehta, N.C., J.O. Legg, C.A.I. Goring, and C.A. Black. 1954. Determination of organic phosphorus in soils: I. Extraction methods. Soil Sci. Soc. Am. Proc. 18: 443-449.
Mokwunye, U. 1975. The influence of pH on the adsorption of phosphate by soils from the Guinea and Sudan savannah zones of Nigeria. Soil Sci. Soc. Am. Proc. 39: 1100-1102.
Moser, U.S., W.A. Sutherland, and C.A. Black. 1959. Evaluation of laboratory indexes of adsorption of soil phosphorus by plants. Plant Soil 10: 356-374.
MuLaughlin, J.R., J.C. Ryden, and J.K. Syers. 1981. Sorption of inorganic phosphate by iron- and aluminium- coataining components. J. Soil Sci. 32: 365-377.
Muljadi, D., A.M. Posner, and J.P. Quirk. 1966. The mechanism of phosphate adsorption by kaolinite, gibbsite, and Pseudoboehmite: Part I. The isotherms and the effect of pH and adsorption. J. Soil Sci. 17: 212-229.
Murphy, D.V., S. Recous, E.A. Stockdale, I.R.P. Fillery, L.S. Jensen, D.J. Hatch, K.W.T. Goulding. 2003. Gross nitrogen fluxes in soil: Theory, measurement and application of N-15 pool dilution techniques. Advances in Agronomy 79: 69-118.
Murphy, J., and J.P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters, Anal. Chim. Acta 27:31-36.
Nannipieri, P., B. Ceccanti, and B. Bianchi. 1990. Characterization of humas-phosphate complexes extracted from the soil. Soil Biol. Biochem. 20: 683-691.
Nannipieri, P., S. Grego, and B. Ceccanti. 1990. Ecological significance of the biological activity in soil. In Bollag, J.M, and G. Stotzky. (eds) Soil Biochemistry, vol. 6. Marcel Dkker, Inc., New York. pp. 293-355.
Nanzyo, M. 1986. Infrared spectra of phosphate sorbed on iron hydroxide gel and sorption products. Soil Sci. Plant Nutri. 32: 51-58.
Newman, R.H., and K.R. Tate. 1980. Soil phosphorus characterization by 31P nuclear magnetic resonance. Commum. Soil Sci. Plant Anal. 11: 835-842.
Nikolov, N. 1972. Phosphate forms in grey forest soil types. Soil Sci. Agrochem. 7: 15-27.
Oehl, F., A. Oberson, S. Sinaj, and E. Frossard. 2001. Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci. Soc. Am. J. 65 : 780-787.
Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. In A.L. Page (ed.) Methods of Soil Analysis, Part 2, 2nd ed. Agronomy monographs 9. Madison, WI. pp. 403-429
Olsen, S.R., and L.A. Dean. 1965. Phosphorus. In A.L. Page (ed.) Methods of Soil Analysis, Part 2, 1st ed. Chemical and microbiological properties, C.A. Black et al. (eds.) Agronomy monographs 9. ASA, Madison, Wisconsin. pp. 1035-1049.
Olsen, S.R., and S.A. Barber. 1977. Effect of waste application on soil phosphorus and potassium. In L.F. Elliott et al. (ed.) Soil for Management of Organic Wastes and Waste Waters. Published by ASA, CSSA, SSSA, Madison, Wisconsin. pp. 197-215.
Omotoso, T.I., and A.Wild. 1970. Content of inositol phosphates in some English and Nigerian soils. J. Soil Sci. 21: 216-223.
Oniani, O.G., M. Chater, and G.E.G. Mattingly. 1973. Some effects of fertilizers and farmyard manure on the organic phosphorus in soils. J. Soil Sci. 24: 1-8.
Osodeke, V.E., D.O.K. Asawalam, D.J. Kamalu, and I.K. Ugwa. 1993. Phosphorus sorption characteristics of some soils of the rubber belt of Nigeria. Comun. Soil Sci. Plant Anal. 24: 1733-1743.
Parfitt, R.L., and J.D. Ruaaell. 1977.Adsorption on hydrous oxides. IV. Mechanism of adsorption of various ions on goethite. J. Soil Sci. 28: 297-305.
Pearson, V., A.G. Norman, and C. Ho. 1941. The mineralization of the organic phosphorus of various compounds in soil. Soil Sci. Soc. Amer. Proc. 6: 168-175.
Penn, C.J. G.L. Mullins, and L.W. Zelzany. 2005. Mineralogy in relation to phosphorus sorption and dissolved phosphorus losses in runoff. Soil Sci. Soc. Am. J. 69: 1532-1540.
Polglase, P.J., N.B. Comerford, and E.J. Jokela. 1992. Mineralization of nitrogen and phosphorus from soil organic matter in southern pine plantations. Soil Sci. Soc. Am. J. 56: 921-927.
Polyzopoulos, N.A., V.S. Keramidas, and H. Kiosse. 1985. Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Soil Sci. Soc. Am. J. 49:81-84.
Poovarodom, S., and R.L. Tate. 1988. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: Laboratory studies. Soil Sci. 145: 337-344.
Quiquampoix, H., and D. Mousain. 2005. Enzymatic hydrolysis of organic phosphorus. In Turner, B.L., E. Frossard, and D.S. Baldwin (eds.) Organic Phosphorus in the Environment. Wallingford, UK: CAB International. pp. 89-112.
Racz, C.J. 1979. Release of P in organic soils under aerobic and anaerobic conditions. Can. J. Soil Sci. 59: 337-339.
Raubuch, M., and F. Beese. 1995. Pattern of microbial indicators in forest soils along an European transect. Biol. Fertil. Soils 19: 362-368.
Raveh, A., and Y. Avimelech. 1978. The effect of drying on the colloidal properties and stability of humic compounds. Plant Soil 50: 545-552.
Roberts, T.L., and J.W.B. Stewart. 1987. Update of residual fertilizer phosphorus in western Canadian soils. Saskatchewan Institute of Pedology Publication No. R523, University of Saskatchewan, Saskatoon, SK.
Rose, H., A.P. Loibner, M. Hasinger, R. Braun, O.H.J. Szolar. 2002. Behavior of PAHs during cold storage of historically contaminated soil samples. Chemosphere 49: 1239-1246.
Rubaek, G.H., and E. Sibbesen. 1993. Resin extraction of labile, soil organic phosphorus. J. Soil Sci. 20: 467-478.
Ruiz, j., and D.Lopez-Hernandez. 1977. Soil Organic Matter Studies. Proceedings of a symposium organized by IAEA, FAO and agrochimica. Braunschschweig 1: 255-261.
Ryden, J.C., J.R. McLaughlin, and J.K. Syers. 1977. Mechanism of phosphate sorption by soils and hydrous ferric oxide gel. J. Soil Sci. 28: 72-92.
Saggar, S., R.L. Parfitt, G. Salt, and M.F. Skinner. 1998. Carbon and phosphorus transformations during decomposition of pine forest floor with different phosphorus status. Biol. Fertil Soils 27: 197-204.
Sample, E.C., and R.J. Racz. 1980. Reaction of phosphate fertilizers in soils. In Khasawneh et al. (eds) The Role of Phosphorus in Agriculture. ASA, CSSA, SSSA, Madison, Wisconsin. pp. 264-272.
Sanyal, S.K., and S.K. De Datta. 1991. Chemistry of phosphorus transformations in soil. Adv. Soil Sci., 16: 1-120.
Saunders, W.M.H. 1965. Phosphorus retention by New Zealand soils and its relationship with free sesquioxides, organic matter, and other soil properties. N. Z. J. Agric. Res. 8: 30-57.
Saunders, W.M.H., and E.G. Williams. 1955. Observations on the determination of total organic phosphorus in soils. J. Soil Sci. 6: 254-267.
Schollenberger, C.J., and R.H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci. 59: 13-24.
Schwertmann, U., and R.M. Cornell. 1991. Iron oxide in the laboratory. Preparation and characterization. VCH.
Shah, R., J.K. Syer, J.D.H. Williams, and T.W. Walker. 1968. The forms of inorganic phosphorus extracted from soil by N sulphuric acid. N.Z. J. Agric. Res. 11: 184-192.
Shang, C., P.M. Huang, and W.B. Stewart. 1990. Kinetics of adsorption of organic and inorganic phosphate by short-range ordered precipitate of aluminum. Can. J. Soil Sci. 70: 461-470.
Sharpley, A.N. 1985. Phosphorus cycling in unfertilized agricultural soils. Soil Sci. Soc. Am. J., 49: 905-911.
Sharpley, A.N., and S.J. Smith. 1983. Distribution of phosphorus forms in virgin and cultivated soil and potential erosion losses. Soil Sci. Soc. Am. J. 47: 581-586.
Sharpley, A.N., and L.R. Ahuja. 1982. Effects of temperature and soil-water content during incubation on the desorption of phosphorus from soil. Soil Sci. 133: 350-355.
Sherrell, C.G., and W.M.H. Saunders. 1966. An evaluation of methods for the determination of total phosphorus in soils. N.Z. J. Agric. Res. 9: 972-979.
Sibbesen, E., and G.H. Rubaek. 1994. Labile, organic phosphorus in incubated soils estimated by macroporous anion-exchange resin. Commun. Soil Sci. Plant Anal. 25: 1671-1683.
Sims, J.T., and B.G. Ellis. 1983. Changes in phosphorus adsorption associated with aging of aluminum hydroxide suspensions. Soil Sci. Soc. Am. J. 47: 912-916.
Singh, B., and R.J. Gilkes. 1991. Phosphorus sorption in relation to soil properties for the major soil types of south-western Australia. Aust. J. Soil Res. 29: 602-618.
Skogley, E,O., S.J. Georgitis, J.E. Yang, and B.E. Schaff. 1990. The phytoavailability soil test-PST. Commum. Soil Sci. Plant Anal. 21:1229-1243.
Skujins, J. 1978. History of abiontic soil enzyme research. In R.G. Bums (ed.) Soil enzymes. Acad. Press, New York. pp. 1-49.
Skujins, J. 1967. Enzymes in soil. In A.D. McLaren and G.H. Peterson (eds.) Soil biochemistry, Vol. 1. Marcel Dekker, Inc., New York. pp. 371-414.
Skujins, J. 1976. Extracellular enzymes in soil. CRC Crit. Rev. Microbiol. 4: 383-421.
Smith, J.L., R.R. Schnabel, B.L. McNeal and G.S. Cambell. 1980. Potential errors in the first order model for estimating soil nitrogen mineralization potentials. Soil Sci. Soc. Am. J. 44: 996-1000.
Smyth, T.J., and P.A. Sanchez. 1980. Effects of lime, silicate and phosphorus applications to an oxisol on phosphorus sorption and iron retention. Soil Sci. Soc. Am. J. 44: 500-505.
Soltanpour, P.N., R.L. Fox and R.C. Jones. 1987. A quick method to extract organic phosphorus from soils. Soil Sci. Soc. Am. J. 51: 255-256.
Sommers, L.E., and D.W. Nelson. 1972. Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Soc. Amer. Proc. 36: 902-904.
Sommers, L.E., R.F. Harries, J.D.H. Williams, D.E. Armstrong and J.K. Syers. 1970. Determination of total organic phosphorus in lake sediments. Limnol. Oceanogr. 15: 301-304.
Sparks, D.L. 1985. Kinetics of ionic reactions in clay minerals and soils. Adv. Agron. 38: 231-266.
Sparrow, E.B., V.L. Cochran, and S.D. Sparrow. 1990. Phosphorus mineralization in subarctic agricultural and forest soils. Bio. Ferti. Soils 10: 107-112.
Speir, T.W., and D.J. Ross. 1978. Soil phosphatase and sulphatase. In Burns, R.G. (ed.) Soil Enzymes. Academic Press, London. pp. 197-215.
Speir, T.W., and J.C. Cowling. 1991. Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices. Bio. Ferti. Soils. 12: 189-194.
Stanford, G., and S.J. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36: 465-472.
Stanford, G., M.H. Frere, and D.H. Schwaninger. 1973. Temperature coefficient of soil nitrogen mineralization. Soil Sci. 115: 321-323.
Stark, S.A., and C.E. Clapp. 1980. Residue nitrogen availability from soil treated with sewage sludge in a field experiment. J. Environ. Qual. 9: 505-512.
Stevenson, F.J. 1986. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, New York. pp. 78-105.
Steward, J.H., and J.H. Oades. 1972. The determination of organic phosphorus in soils. J. Soil Sci. 23: 38-49.
Stewart, J.W.B., and H. Tiessen. 1987. Dynamics of soil organic phosphorus. Biogeochemistry 4: 41-60.
Stewart, J.W.B., and A.N. Sharpley. 1987. Controls on dynamics of soil and fertilizer phosphorus and sulfur. In R.F. Follett et al. (ed.) Soil fertility and organic matter as critical components of production systems. ASA, SSSA, Madison. WI. pp. 101-121.
Stogley, E.O., S.J. Georgitis, J.E. Yang, and B.E. Schaff. 1990. The phytoavailability soil test-Pst. Comm. Soil Sci. Plant Anal. 22: 1229-1243.
Sumann, M., W. Amelung, L. Haumaier, and W. Zech. 1998. Climatic effects on soil organic phosphorus in the North American great plains identified by phosphorus-31 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 62: 1580-1586.
Suzumura, M., and A. Kamatani. 1995. Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: Implications for the phosphorus cycle . Geochim. Cosmochim. Acta 59: 1021-1026.
Syers, J.D., T.D. Evans, J.D.H. Williams, and J.T. Murdock. 1971. Phosphate sorption parameters of representative soils from Rio Grande do Sul, Brazil. Soil Sci. 112: 267-275.
Syers, J.K., J.D.H. Williams, A.S. Campbell, and T.W. Walker. 1967. The significance of apatite inclusions in soil phosphorus studies. Soil Sci. Am. Proc. 31: 752-756.
Syers, J.K., J.D.H. Williams, and T.W. Walker. 1968. The determination of total phosphorus in soils and parent materials. N. Z. J. Agric. Res. 11: 757-762.
Tabatabai, M.A. 1982. Soil enzymes. In: Page, A.L., Miller, R.H., and D.R. Keeney (eds.) Methods of Soil Analysis. Part2, SSSA, Madison, WI, USA. pp. 903-947.
Tabatabai, M.A., and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307.
Tarafdar, J.C., and A. Jungk. 1987. Phosphatase activity in the rhizophere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 3: 199-204.
Tate, K.R. 1984. The biological transformation of P in soil. Plant Soil 76: 245-256.
Thomas, R.L., and B.T. Bowman. 1966. The occurrence of high molecular weight organic phosphorus compounds in soil. Soil Sci. Soc. Am. Proc. 30: 799-801.
Thompson, E.J., and C.A. Black. 1947. The effect of temperature on the mineralization of soil organic phosphorus. Soil Sci. Soc. Am. Proc. 12:323-326.
Thompson, L.M., C.A. Black, and J.A. Zoellner. 1954. Occurrence and mineralization of organic phosphorus in soils with particular reference to associations with nitrogen, carbon, and pH. Soil Sci. 77: 185-196.
Thomson, L.M., and C.A. Black. 1950. Mineralization of organic phosphorus, nitrogen, and carbon in Clarion and Webster soils. Soil Sci. Soc. Am. Proc. 14: 147-151.
Tisdale, S.L., and W.L. Nelson. 1985. Soil fertility and fertilizers. 4nd ed. The Macmillan company, N.Y., U.S.A. pp. 210-211.
Torrent, J. 1987. Rapid and slow phosphate sorption by Mediterranean soils: effect of iron oxides. Soil Sci. Soc. Am. J. 51: 78-82.
Torrent, J., V. Barron, and U. Schwermann. 1990. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54: 1007-1012.
Trasar-Cepeda, M.C., and T. Carballus. 1991. Liming and the phosphatase activity and mineralization of phosphorus in an andic soil. Soil Biol. Biochem. 23: 209-215.
Turner, B.L., and P.M. Haygarth. 2005. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci. total environ. 344: 27-36.
Turner, B.L., B.J. Cade-Menun, L.M. Condron, S. Newman. 2005. Extraction of soil organic phosphorus. Talanta 66:294-306.
Van Diest, A., H.W. Jespersin, R.F. White, and C.A. Black. 1960. Test of two methods for measuring a labile fraction of inorganic phosphorus in soils. Soil Sci. Soc. Am. Proc. 24: 498-502.
Vitousek, P.M., K. Van Cleve, N. Balakrishan, and D. Mueller-Dombois. 1983. Soil development and nitrogen turnover in montane forest soils on Hawaii. Biotropica 15: 268-274.
Walbridge, M.R., and P.M. Vitousek. 1987. Phosphorus mineralization potentials in acid organic soils: Processes affecting 32PO43- isotope dilution measurements. Soil Biol. Biochem. 19: 709-717.
Walker, T.W., and A.F.R. Adams. 1958. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Sci. 85: 307-318.
Walkley, A. 1946. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63: 251-263.
Williams, E.G. 1959. Influences of parent material and drainage conditions on soil phosphorus relationships. Agrochimica. 3: 279-309.
Williams, E.G., N.M. Scott, and M.J. McDonald. 1958. Soil properties and phosphate sorption. J. Sci. Food Agric. 9: 551-559.
Williams, E.G. 1967. The intensity and quantity aspects of soil phosphate status and laboratory extraction values. An. Edafol. Agrobiol. 26: 525-546.
Williams, J.D.H., and T.W. Walker. 1967. Comparison of “ignition” and “extraction” methods for the determining of organic phosphate in rocks and soils. Plant Soil 27: 457-459.
Williams, J.D.H., J.K. Syers, T.W. Walker, and R.W. Rex. 1970. A comparison of methods for the determination of soil organic phosphorus. Soil Sci. 110: 13-18.
Yang, J.E., E.O. Stogley, S.J. Georgitis, B.E. Schaff, and A.H. Ferguson. 1991. Phytoavailability soil test: Development and verification of theory. Soil Sci. Soc. Am. J. 55: 1358-1365.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top