跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秉諭
研究生(外文):Ping-Yu Wu
論文名稱:現行臺灣土壤磷速測法與作物施肥推薦量之再評估
論文名稱(外文):Reevalution of current methods of soil test for phosphorusand fertilizer recommendations in Taiwan soils
指導教授:何聖賓
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:磷有效性指標磷飽和度指標Bray No.10.01M氯化鈣草酸銨等溫吸附實驗Langmuir方程式Neubauer生物試驗磷肥推薦量
外文關鍵詞:P availibility indexP saturation indexBray No.10.01M CaCl2ammonium oxalateP sorption isothermLangmuir equationNeubauer bioassayP fertilizer recommendations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:804
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  近年來土壤與磷相關研究已由偏重磷有效性指標與磷肥推薦量評估,轉變為考量磷飽和指標與磷流失風險評估,而先前研究指出由Bray No.1萃取量和吸附實驗所計算出磷肥推薦量不盡相符;故本研究以18種臺灣農田土壤對此進行探討,並與植生試驗和其他與磷相關指標作比較,對修正臺灣現行磷肥推薦量分級標準提出初步嘗試。Bray No.1萃取量對時間的趨勢,在和基本性質比較後,初步懷疑可能與pH值以及磷、鐵、鋁含量有關。等溫吸附實驗中,由Langmuir方程式推算出來的最大吸附量和磷肥推薦量,會受到所添加磷濃度及各濃度處理組數和組距影響;故最大吸附量以存在較大磷添加濃度的組別為準,而磷肥推薦量則以較多組數、較小組距所計算出來者為準。在Neubauer生物試驗中,因發芽率和各盆磷總含量間無明顯相關,故將其扣去blank組得到的吸收量平均,換算為土壤有效磷含量(mg P/kg soil),作為植物有效性磷的依據。由各指標間的相關係數矩陣可看出:三種萃取法(Bray、CaCl2、草酸銨)和兩種磷飽和指標(Psat、DPS)彼此有極顯著正相關(P=0.001),而小麥吸收量所推算植物有效性磷含量與Bray No.1萃取磷、草酸銨萃取磷、Psat和DPS-1亦存在相關性(P=0.05)。另外0.01 M CaCl2萃取量對磷飽和指標(磷流失風險評估)的圖形中,可以看出當Psat>14%、DPS-1>10%、DPS-2>40%時(如二水、台南、五魁寮、將軍系),可能具有流失風險。而由吸附實驗0.2、0.3 mg P/L計算出推薦量對各萃取量與磷飽和指標作圖,以SigmaPlot內建雙曲線衰減或指數衰減曲線做非線性迴歸,R2值分別以Bray(0.66~0.77)和DPS-1(0.87~0.93)最高;再以0.2 mg P/L對應添加量與Bray萃取量作雙曲線衰減迴歸,由方程式: y=1572.43/(0.8642+x),可得到特定萃取範圍的磷肥推薦量;並以此作為現行(依Bray No.1萃取量來分級的)磷肥推薦量之修正。
  Recently, the research of soil phosphorus has been changed from availability indices and fertilizer recommendations to saturation indices and run-off risk assessments. A report pointed out the P-fertilizer recommendations calculated by Bray-P and sorption isotherm weren''t fitted well with some acid soils in Taiwan. The subject of this article is comparing the data between P availabilty and saturation indices, Neubauer bioassay, and other elementary properties of eighteen Taiwan agricultural soils, and trying to build a proper standard with different P levels to fertilizer recommendations. The trend of Bray No.1 extractable P with different extraction time and soil/solution ratios seems to be relate to pH value and contents of P, Fe, and Al of soil samples. Parameters of Langmuir sorption isotherm equation were affected by the concentration of P addition, the number of data points, and the interval within two points. Wheat germination rates and amount of P uptake had no significant correlation in the Neubauer bioassay. Three extraction methods (Bray-P, 0.01M CaCl2-P, Oxalate-P) and two saturation indices (Psat, DPS) have significant correlation (P= 0.001); P uptake by wheat and other P indices also have significant correlation (P= 0.05). The assessments of P run-off risk by P saturation indices describe that when Psat>14%, DPS-1>10%, or DPS-2>40%, there may be some risk of those soil to liberate P to surrounding environment. Nonlinear regression between recommending P fertilizer application rates, which based on sorption isotherm (0.2, 0.3 mg P/L), and P availability and saturation indices shows that Bray, DPS-1, and the fertilizer recommendations have significant correlations. Thus, from the nonlinear regression equation: y=1572.43/(0.8642+x), we can get the fertilizer recommendations to specific range of Bray extractable P levels. This is an attempt to correct the fertilizer recommendations to Taiwan agricultural soils nowaday.
目錄

口試委員會審定書...................................................................................................Ⅰ
序言.........................................................................................................................Ⅱ
中文摘要..................................................................................................................Ⅲ
英文摘要..................................................................................................................Ⅳ
目錄.........................................................................................................................Ⅵ
圖次.........................................................................................................................Ⅶ
表次.........................................................................................................................Ⅹ
第一章、前言...........................................................................................................1
第二章、材料與方法................................................................................................8
 第一節、土壤取樣與基本性質分析......................................................................8
 第二節、萃取法測定土壤有效性磷....................................................................13
 第三節、土壤與磷的等溫吸附實驗....................................................................14
 第四節、Neubauer試驗與有效性磷.....................................................................15
 第五節、土壤之磷飽和指標與計算....................................................................17
 第六節、統計與迴歸分析相關計算....................................................................18
第三章、結果與討論..............................................................................................19
 第一節、萃取法測定結果...................................................................................19
 第二節、等溫吸附實驗結果................................................................................34
 第三節、Neubauer試驗結果.................................................................................54
 第四節、磷指標間比較與統計迴歸分析.............................................................56
 第五節、現行磷肥推薦量分級標準初步修正......................................................61
第四章、結論..........................................................................................................76
參考文獻..................................................................................................................77
附錄..........................................................................................................................85
王禎祺。1999。臺灣酸性土壤石灰需要量之評估。國立臺灣大學農業化學研究所碩士論文。臺灣。

沈明來。2001。生物統計學入門,第四版,九州圖書文物有限公司,
台灣。

宋祥葳。2003。利用鉬藍法測定土壤萃取液中磷之可能誤差探討。國立臺灣大學農業化學研究所碩士論文。臺灣。

何聖賓。2002-2004。臺灣地區耕地土壤有機態磷礦化速率之評估與模式之建立Ⅰ、Ⅱ、Ⅲ。行政院農業委員會科技研究計劃研究報告。臺灣。

何聖賓。2005。土壤肥力等級條件之研究:現行土壤磷素速測法與作物施肥推薦量之再評估。行政院農業委員會科技研究計劃研究報告。臺灣。

林政宜。2002。臺灣酸性土壤石灰需要量之評估及利用石灰對土壤中有效磷及無定型鐵鋁含量之影響。國立臺灣大學農業化學研究所碩士論文。臺灣。

林紫惠。1989。評估氧化鐵濾紙法對臺灣土壤有效磷抽出之適用性。國立臺灣大學農業化學研究所碩士論文。臺灣。

馬清華。1996。臺灣主要土壤磷肥有效性指標動力變化之研究及磷肥需要量的估算。國立臺灣大學農業化學研究所博士論文。臺灣。

彭昭英。2004。SAS與統計分析第十三版。儒林圖書有限公司。臺灣。

黃鎮海等人。2001。作物施肥手冊第五版。行政院農業委員會,農業試驗所,中華永續農業協會編印。台灣。

楊光盛,李豐,孫華慰,陳建維,洪國棟。1989。肥料推薦量電腦模式建立研究──作物營養診斷及施肥推薦量建立。經濟部。臺灣。

楊光盛。1991。肥料推薦量系統模式建立研究。國立臺灣大學農業化學研究所博士論文。臺灣。

劉欣瑩。2003。臺灣東部酸性土壤石灰需要量之評估及施用石灰對土壤中有效性磷及陽離子交換容量之影響。國立臺灣大學農業化學研究所碩士論文。臺灣。

Alexander, T. G., and J. A. Robertson. 1972. EDTA extractable phosphorus in relation to available inorganic phosphorus form in soils. Soil Sci. 114:69-72.

Bache, B. W., and E. G. Williams. A phosphate sorption index for soils. J. Soil Sci. 22:289-301.

Barrow, N. J. 1983. A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci. 34:733-750.

Beckwith, R. S. 1965. Sorbed phosphate at standard supernatant concentration as as est-imate of the phosphate needs of soils. Aust. J. Exp. Agr. and An. Hus. 5:52-58.

Bowden, J. W., A. Posner, and J. Quirk. 1977. Ionic sorption on variable charge mineral surface. Theoretical-charge development and titration curve. Aust. J. Soil Res. 15:121-136.

Bowman, R. A., S. R. Olsen, and F. S. Watanabe. 1978. Greenhouse evaluation of resid-ual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. Soc. Am. J. 42:451-454.

Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of ph-osphorus in soils. Soil Sci. 59:39-45.

Brock, E. H., Q. M. Ketterings, and P. J. A. Kleinman. 2007. Measuring and predicting the phosphorus sorption capacity of manure-amended soils. Soil Sci. 172:266-278.

Bohn, H. L., B. L. McNeal, and G. A. O''Connor. 2001. Soil Chemistry, 3rd ed. John Wiley & Sons Inc. NY, USA.

Chapman, H. D. 1932. Studies on the blue colorimetric method for the determination of phosphorus. Soil Sci. 33:125-134.

Dickman, S. R., and R. H. Bray. 1946. Colorimetric determination of phosphate. Ind. Eng. Chem. Anal. Ed. 12:665-668.

Dyer, W. J., and C. L. Wrenshall. 1938. An improved method for the determination of phosphate by photoelectric colorimetry. Can. J. Res. 14:97-108.

Fox, R. L., and E. J. Kamprath. 1970. Phosphate sorption isotherm for evaluating the p-hosphate requirements of soils. Soil Sci. Soc. Am. Proc. 34:902-907.

Fox, R. L. 1981. "External phosphorus requirements of crops," in Chemistry in the Soil Environment. ASA Special Publication no. 40. (Madison, Wis.: Amer. Soc. Agron. and Soil Sci. Soc. Amer.), pp.223-239.

Gee, G. W., and J. W. Bauder. 1986. In "Methods of soil analysis, part 1. physical and mineralogical methods" 2nd ed. ( A. Klute ed.) Chap.15. pp.383-411. Agro. mono. No.9 ASA-SSSA. Madison, WIS.

Goldberg, S., and G. Sposito. 1984. A chemical model of phosphate adsorption by soils: Ⅰ. Reference oxide minerals. Soil Sci. Soc. Am. J. 48:772-778.

Gunary, D. 1970. A new adsorption isotherm for phosphate in soil. J. Soil Sci. 21:72-77.

Haden, V. R., Q. M. Ketterings, and J. E. Kahabka. 2007. Factors affecting change in soil test phosphorus following manure and fertilizer application. Soil Sci. Soc. Am. J. 71:1225-1232.

Hahn, F. L., and R. Luckhaus. 1956. Ein vorzügliches reagens zur colorimetrischen bes-timmung von phosphat und arsenat. Z. Anal. Chem. 149:172-177.

Hanlon, E. A., and G. V. Johnson. 1984. Bray/Kurtz, Mehlich Ⅲ, AB/D and ammonium acetate extractons of P, K, and Mg in four Oklahoma Soils. Commun. Soil Sci. Plant Anal. 15:277-294.

Harter, R. D., and D. E. Baker. 1977. Applications and misapplications of Langmuir equation to soil adsorption phenomena. Soil Sci. Soc. Am. J. 41:1077-1080.

Holford, I. C. R., R. W. M. Wedderburn, and G. E. G. Mattingly. 1974. A Langmuir two-surface equation as a model for phosphate adsorption by soils. J. Soil Sci. 25:242-255.

Indiati, R., and U. Neri. 2004. Time-dependent phosphorus extractability from soils treated with different fertilizer phosphorus sources. Commun. Soil Sci. Plant Anal. 35:1741-1755.

Jackson, M. L. 1958. Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, N. J. USA.

Jean, M. 1956. Étude du dosage du phosphore et de l''arsenic dans les aciers par colorim-étrie. Anal. Chim. Acta. 14:172-182.

John, M. K. 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 109:214-220.

Jones, Jr. T. B. 1998. Soil test methods: past, present, and future use of soil extractants. Commun. Soil Sci. Plant Anal. 29:1543-1552.

Jones, Jr. T. B. 2001. Laboratory guide for conducting soil test and plant analysis. CRC Press LLC, USA.

Ketterings, Q. M., K. J. Czymmek, W. S. Reid, and R. F. Wildman. 2002. Conversion of modified Morgan and Mehlich-Ⅲ soil test to Morgan soil test values. Soil Sci. 167:830-837.

Kleinman, P. J. A., A. N. Sharpley, K. Gartley, W. M. Jarrell, S. Kuo, R. G. Menon, R. Myers, K. R. Reddy, and E. O. Skogley. 2001. Interlaboratory comparison of soil phosphorus extracted by various soil test methods. Commun. Soil Sci. Plant Anal. 32:2325-2345.

Kuo, S. 1988. Application of a modified Langmuir isotherm to phosphate sorption by some acid soils. Soil Sci. Soc. Am. J. 52:97-102.

Langmuir, I. 1918. The adsorption of gases on plane surface of glass, mica, and platinu-m. J. Am. Chem. Soc. 40:1361-1402.

Matar, A. E., S. Garabed, S. Riahi, and A. Mazid. 1988. A comparison of four soil test p-rocedures for determination of available phosphorus in calcareous soils of the Medi-terranean region. Commin. Soil Sci. Plant Anal. 19:127-140.

McGechan, M. B., and D. R. Lewis. 2002. Sorption of phosphorus by soil, part 1: Princ-iples, equations, and models. Biosyst. Eng. 82:1-24.

McGechan, M. B. 2002. Sorption of phosphorus by soil, part 2: Measurement methods, results and model parameter values. Biosyst. Eng. 82:115-130.

Mckeague, J. A., and J. H. Day. 1966. Dithionite and oxalate extractable iron and alumi-nium as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-22.

Mehlich, A. 1953. Determination of P, K, Na, Ca, Mg and NH4. Soil Test Division Mim-eo, North Carolina Department of Agriculture, Raleigh, NC USA.

Mehlich, A. 1978. New extractant for soil test evaluation of phosphorus, potassium, ma-gnesium, calcium, sodium, manganese and zinc. Commin. Soil Sci. Plant Anal. 9:477-492.

Mehlich, A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15:1409-1416.

Morgan, M. F. 1941. Chemical soil diagnosis by the universal soil testing system. Conn. Agric. Exp. Stn. Bull. No. 450.

Murphy, J., and J. P. Riley. 1958. A single-solution method for the determination of sol-uble phosphate in sea water. J. Mar. Biol. Ass. U.K. 37:9-14.

Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determina-tion of phosphate in natural waters. Anal. Chim. Acta. 27:31-36.

Nelson, D. W., and L. E. Sommers. 1982. In "Methods of soil analysis, part 2. chemical and microbiological properties" 2nd ed. ( A. L. Page ed.) Chap.29. pp.539-579. Agro. mono. No.9 ASA-SSSA. Madison.

Nesse, P., J. Grava, and P. R. Bloom. 1988. Correlation of several tests for phosphorus with resin extractable phosphorus for 30 alkaline soils. Commin. Soil Sci. Plant Anal. 19:675-689.

Ohno, T., and L. M. Zibilske. 1991. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55:892-895.

Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S.D.A. Circ. 939.

Olsen, S. R., and F. S. Watanabe. 1957. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc. 21:144-149.

Owens, L. B., D. W. Nelson, and L. E. Sommers. 1977. Determination of inorganic pho-sphorus in oxalate extracts of soils. Soil Sci. Soc. Am. J. 41:148-149.

Paauw, F. van der. 1971. An effective water extraction method for the determination of plant-available soil phosphorus. Plant and Soil 34:467-481.

Parfitt, R. L., R. J. Atkinson, and R. S. C. Smart. 1975. The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. Am. Proc. 39: 837-841.

Pons, W. A., and J. D. Guthrie. 1946 Determination of inorganic phosphorus in plant m-aterials. Ind. Eng. Chem. Anal. Ed. 18:184-186.

Posner, A. M., and J. W. Bowden. 1980. Adsorption isotherms: Should they be split? J. Soil Sci. 31:1-10.

Randall, G. W., and J. Grava. 1971. Effect of soil: Bray no. 1 ratios on the amount of ph-osphorus extracted form calcareous Minnesota soils. Soil Sci. Soc. Am. Proc. 35:112-114.

Sato, S., and N. B. Comerford. 2006. Organic anions and phosphorus desorption and bioavailability in a humid Brazilian ultisol. Soil Sci. 171:695-705.

Schollenberger, C. J., and R. H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci. 59:13-24.

Schouwenburg, J. C. van, and I. Waliga. 1967. The rapid determination of phosphorus in presence of arsenic, silicon, and germanium. Anal. Chim. Acta. 37:271-274.

Smillie, G. W., and J. K. Syers. 1972. Calcium fluoride formation during extraction of c-alcareous soils with fluoride: Ⅱ. Implications to the Bray P-1 test. Soil Sci. Soc. Am. Proc. 36:25-30.

Smith, F. W., B. G. Ellis, and J. Grava. 1957. Use of acid-fluoride solutions for the extr-action of available phosphorus in calcareous soil to which rock phosphate has been a-dded. Soil Sci. Soc. Am. Proc. 21:400-404.

Shuman, L. M., P. L. Raymer, J. L. Day, and M. J. Cordonnier. 1988. Comparison of fo-ur phosphorus extraction methods on three acid southeastern soils. Commin. Soil Sci. Plant Anal. 19:579-595.

Sposito, G. 1982. On the use of the Langmuir equation in the interpretation of "adsorpti-on" phenomena: Ⅱ. The "two-surface" Langmuir equation. Soil Sci. Soc. Am. J. 46:1147-1152.

Sposito, G. 1984. The surface chemistry of soils. Oxford Univ. Press, New York.

Stumm, W., R. Kummert, and L. Sigg. 1980. A ligand exchange model for the adsorpti-on of inorganic and organic ligands at hydrous oxide interfeces. Croat. Chem. Acta. 53:291-312.

Trug, E., and A. H. Meyer. 1929. Improvements in the Deniges colorimetric method for phosphorus and arsenic. Ind. Eng. Chem. Anal. Ed. 1:136-139.

van Veldhoven, P. P., and G. P. Mannaerts. 1987. Inorganic and organic phosphate meas-urements in the nanomolar range. Anal. Biochem. 161:45-48.

Watanabe, F. S., and S. R. Olsen. 1962. Colorimetric determination of phosphorus in w-ater extracts of soil. Soil Sci. 93:183-188.

Woodruff, J. R., and E. J. Kamprath. 1965. Phosphorus adsorption maximum as measur-ed by the Langmuir isotherm and its relationship to phosphorus availability. Soil Sci. Soc. Am. Porc. 29:148-150.

Wu, H. 1920. Contribution to the chemistry of phospho molybdic acids, phosphotungs-tic acids, and allied substances. J. Biol. Chem. 43:189-220.

Zinzadze, S. R. 1930. ZINZADZE, S. R. 1930. Neue methoden zur kolorimetrischen b-estimmung der phosphorund arsensäure. Z. Pflanzenernähr. Düng. u. Bodenk. A. 16: 129--184.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊