跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張富杰
研究生(外文):Fu-Chieh Chang
論文名稱:氮化鎵奈米線的光電導之尺寸及表面分子效應
論文名稱(外文):Effects of Size and Surface Molecules on Photoconductivity of Individual GaN Nanowire
指導教授:楊英杰楊英杰引用關係
指導教授(外文):Ying-Jay Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:28
中文關鍵詞:氮化鎵奈米線光電導尺寸效應表面能帶彎曲表面態
外文關鍵詞:GaN nanowiresphotoconductivitysurface band-bendingsize effectsurface electron trapping statesrecombination center
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討以熱化學氣相沉積法所成長之m軸單一氮化鎵奈米線的暗電導及光電導之尺寸效應。當直徑從135 nm經臨限直徑35nm至20 nm,氮化鎵奈米線之暗電導有著明顯的下降,其值從150 Ohm-1cm-1降至6 Ohm-1cm-1;其光電導也觀察到類似的尺寸效應,當直徑小於臨限值40 nm時,載子生命週期與遷移率之乘積會下降約兩個數量級。這些結果顯示出當直徑小於臨限直徑時,氮化鎵奈米線會因表面態補捉電子而完全空乏。而從調節激發光源功率、環境及溫度之光電導實驗使我們更深入了解由表面所主導之電傳導特性。因表面能帶彎曲所造成之位障由實驗結果估計約97 meV。
另外,以低溫有機金屬化學氣相沉積法所成長,直徑範圍為10-20 nm之氮化鎵奈米線在325 nm UV雷射激發下顯示出異常的負光導,而使用低於能隙之532 及 808 nm雷射激發時則呈現正光導;值得注意的是不論是正光導還是負光導都對周圍的氧氣相當敏感。最後我們提出與周圍氧氣有關之表面電子補捉態及復合中心/受體級來解釋低溫成長之氮化鎵奈米線其光電導之變化。
Size effect on the dark- and photo- conductivities (PC) in the individual m-axial GaN nanowires grown by thermal chemical vapor deposition (Thermal CVD) have been studied. The dark conductivity shows a rapid drop from a constant level of 150 Ohm-1cm-1 to 6 Ohm-1cm-1 as diameter decreases from 135 nm via a critical value of 35nm to 20 nm. Similar size dependence is also observed from the PC measurement. The calculated products of carrier lifetime and mobility show a near two orders of magnitude drop at diameters below a consistent critical diameter (dcrt) of 40 nm. These results show that nanowires are fully depleted below dcrt due to the electron capture of surface states. The surface-dominant transport properties of GaN nanowires are further confirmed by the power- environment- and temperature- dependent PC measurements. The effective barrier height induced by surface band-bending has been estimated to be about 97 meV.
In addition, an anomalous negative PC has been observed under 325 nm UV illumination from the GaN nanowires with smaller diameters of 10-20 nm grown by low-temperature (LT) metal organic chemical vapor deposition (MOCVD). Positive PC can be also detected by below bandgap excitation using 532 and 808 nm light sources. It is noted that either negative or positive PC are very sensitive to oxygen ambient. The coexistence of surface electron trapping states mediated by foreign oxygen and the recombination center/acceptor level are suggested to explain the variety of PC in the LT-grown GaN nanowires.
口試委員會審定書……………………………………… i
誌謝………………………………….….…….… ii
中文摘要……………………………..…………….. iii
英文摘要………………………………………………... iv
第一章 緒論……………………………………. 1
1.1前言………………………….………………………………... 1
1.2研究動機與目的………………………….…………………... 1
第二章 實驗過程與方法…………………………………..… 2
2.1氮化鎵奈米線之成長方式….………….…………......... 2
2.1.1 熱化學氣相沉積法………………………………………. 2
2.1.2 有機金屬化學氣相沉積法………………………………… 3
2.2 單根氮化鎵奈米線之試片製作……………………………….. 4
2.2.1 銅網遮罩蒸鍍法…………………………………………….4
2.2.2 聚焦離子束法………………………….……………………5
2.2.3 電子束顯影法……………………………………………….5
2.3 電性量測系統……………………………...…………………….7
2.3.1 基本電性量測……………………………………………….7
2.3.2 光電導之量測………………..………………………7
2.3.3 真空及變溫系統之量測…….………………………………8
第三章 實驗結果及討論………………...………….………9
3.1 Thermal CVD成長之氮化鎵奈米線其電傳導特性……….…10
3.1.1 基本電性量測,光電導量測及光譜量測…….…………..10
3.1.2 大氣環境下調節激發光功率之光電導量測……..12
3.1.3不同氣體環境下之光電導量測…………..…..…………..14
3.1.4真空環境下調節溫度之光電導量測……..………………17
3.2 MOCVD成長之氮化鎵奈米線其電傳導特性……..…………19
3.2.1 基本電性量測及光電導量測…………………………….19
3.2.2 不同環境下之光電導量測及光譜量測…….……………20
第四章 結論………….………………………………….24
參考文獻……………………………...………………………..25
[1] T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-hetero structure LEDs”, J Crys.Growth, Vol.189, p.p.778-781 (1998).

[2] R. Cheung, Reeves, R. J. , and S.A Brown, “Effects of dry processing on the optical properties of GaN”, J. Appl. Phys., Vol. 88, Issue 12, p.p7111-7114 (2000).

[3] W. Yang, T. Nohava, S. Krishnankutty, and R. Torreano, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett., Vol. 73, p.p.1086-1088 (1998).

[4] S. Gradečak, F. Qian, Y. Li, H.G. Park, and C.M. Lieber, “GaN nanowire lasers with low lasing thresholds”, Appl. Phys. Lett., Vol. 87, 173111 (2005).

[5] L. C. Chen, K. H. Chen and C. C. Chen, “Group III- and Group IV- Nitride Nanorods and Nanowires", Chapter 9, pp. 257-309, in Z. L. Wang, Ed., Nanowires and Nanobelts − Materials, Properties and Devices, Vol. 1: Metal and Semiconductor Nanowires, Kluwer Academic Publisher, (2003).

[6] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen and C. C. Chen, “Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-Dimensional GaN Nanowire Substrates ”, Adv. Func. Mater., Vol. 14, Issue 3, p.p.233-237 (2004).


[7] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. S. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Pong and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc.,Vol.123, p.p2791-2798 (2001).

[8] S. Dhara, A. Datta, C. W. Hsu, C. T. Wu, C. H. Shen, Z. H. Lan, K. H. Chen, L. C. Chen, Y. L. Wang and C. C. Chen, “Hexagonal-to-cubic phase transformation in GaN nanowiresby Ga implantation”, Appl. Phys. Lett., Vol. 84, Issue 26, p.p5473- 5476(2004).

[9] S. Z. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

[10] P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice-Hall Inc., New Jersey, 1997).

[11] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys.Vol. 79, Issue 10, p.p7433-7473(1996).

[12] K. Takahiro, Y. Hisashi, A. Sadao, F. Shunro, and O. Kohji, “Optical properties of hexagonal GaN”, J. Appl. Phys. , Vol. 82, Issue 7, p3528-3535 (1997).

[13] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. , Vol. 71, Issue 18, p.p2572-2574 (1997).



[14] R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, and H. Luth, “Size-dependent Photoconductivity in MBE-Grown GaN-Nanowires”, Nano. Lett. , Vol. 5, p.p981-984 (2005).

[15] H. C. Yang, T. Y. Lin, and Y. F. Chen, “Nature of the 2.8-eV photoluminescence band in Si-doped GaN”, Phys. Rev. B, Vol.62, 12593 (2000).

[16] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire”, Appl. Phys. Lett. ,Vol. 68, Issue 15, p.p2100-2101 (1996).

[17] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z.Chen, and Y. D. Zheng, “Metal–semiconductor–metal GaN ultraviolet photodetectors on Si (111)”, Appl. Phys. Lett. , Vol. 77, Issue 3 , p.p444-446 (2000).

[18] B. Shen, K. Yang, L. Zang, Z.Z. Chen, Y.G.. Zhou, P. Chen, R. Zhang, Z.C. Huang, H.S. Zhou and Y.D. Zheng, “Study of Photocurrent Properties of GaN Ultraviolet Photoconductor Grown on 6H-SiC Substrate”, Jpn. J. Appl. Phys. Vol. 38, p.p767-769 (1999).

[19] Z. C. Huang, D. B. Mott,P. K. Shu, R. Zhang, D. K. Wickenden, and J. C. Chen, “Optical quenching of photoconductivity in GaN photoconductors” J. Appl. Phys. ,Vol. 82, Issue 5, p.p2707-2709 (1997).


[20] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, and M. Blasingame, “High-responsivity photoconductive ultraviolet sensors on insulating single-crystal GaN epilayers ”,Appl. Phys. Lett.,Vol. 60, p.p2917-2919 (1992).

[21] F. Binet, J. Y. Duboz, and E. Rosencher,” Mechanisms of recombination in GaN photodetectors, Appl. Phys. Lett., Vol. 69, No. 9, p.p1202-1204 (1996)

[22] K. S. Stevens, M. Kinniburgh, and R. Beresford,” Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111)”, Appl. Phys. Lett. 66 (25), p.p3518-3520 (1995)

[23] E. Mun˜oz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sa´nchez, M. A. Sa´nchez-Garcı´a,
and E. Calleja, “Photoconductor gain mechanisms in GaN ultraviolet detectors”, Appl. Phys. Lett., Vol. 71, p.p870-872 (1997).

[24] J A Garrido, E Monroy, I Izpura and E Mu˜noz,” Photoconductive gain modelling of
GaN photodetectors”, Semicond. Sci. Technol. 13 (1998) 563–568.

[25] Claude M. Penchina, J. S. Moore, and N. Holonyak, Jr., “Energy Levels and Negative Photoconductivity in Cobalt-Doped Silicon”, Physical. Review.143 ,634 (1996).

[26] A. Armstrong , A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, “Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 84, 374 (2004)

[27] C. H. Seager , A. F. Wright, J. Yu and W. Götz, “Role of carbon in GaN”, J. Appl. Phys. 92, 6553 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top