跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:褚坤達
研究生(外文):Kun-Da Chu
論文名稱:應用於W頻帶接收機前端之互補式金氧半場效電晶體毫米波電路設計技巧
論文名稱(外文):CMOS Millimeter Wave Circuit Design Techniques for W-band Receiver Front-End
指導教授:汪重光汪重光引用關係
指導教授(外文):Chorng-Kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:78
中文關鍵詞:接收機低雜訊放大器毫米波
外文關鍵詞:receiverLNAmillimiter-wave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新的感測器技術使得被動式毫米波影像能夠以視頻的速率產生,它同時有著
在霧、煙和雲中等可見度較低的情況下,仍然能夠成像的能力。近年來,很多操
作在W 頻帶的關鍵電路使用CMOS 的製程,證明了CMOS 在W 頻帶的操作能
力。由於低成本、低功率以及高度積體化的需求,本論文提出使用0.13-μm CMOS
的V頻帶低雜訊放大器以及使用65nm CMOS 的W頻帶低雜訊放大器和接收機。
V頻帶的低雜訊放大器是使用0.13-μm CMOS 製作,採用gm 提升以及電流
再使用的技巧,在相同的增益要求下,達到較好的雜訊效能以及較小的功率消
耗。量測到的峰值電壓增益在54GHz 為20.4dB,不包含balun 及open-dran 的損
耗。量測到的平均noise figure 為9dB,最小值為7dB 在59GHz。IIP3 是-15dBm,
核心的面積是0.4 x 0.37 mm2,消耗7.2mW,在供應電壓為1.2V。使用同樣電流
再使用技巧的W 頻帶低雜訊放大器,是使用65nm CMOS 設計。量測到的S21
在103GHz 是11dB,noise figure 是10dB。IIP3 是-14dBm,面積是0.17 x 0.38 mm2,
消耗25mW,在供應電壓為1.5V。
W頻帶的接收機是設計在65nm CMOS,供應電壓為1V。這個高度積體化
的接收器是採用超外差的架構,提供被動式毫米波影像及資料傳輸的功能。所提
出的倍頻器是使用注入鎖定的振盪器,操作在電壓限制的區域,可以簡化頻率合
成器的複雜度。模擬的最大轉換增益在102GHz 是42dB,頻寬是4GHz,noise
figure 是12.2dB。IIP3 是-26dBm,面積是0.95 x 0.8 mm2,消耗110mW 的功率。
New sensor technology enables the generation of passive millimeter-wave
(PMMW) imaging at video-rate, which has the ability to form images in low-visibility
condition such as haze, fog, clouds, or smoke. In recent years, many critical circuits
operated at W-band have been fabricated in CMOS technology to demonstrate the
potential of CMOS circuits at W-band. For the demand of low cost, low power and
high integration, this thesis presents the V-band and W -band LNAs and W-band
receiver in 0.13-μm and 65-nm CMOS technologies.
A V-band LNA is fabricated in a 0.13-μm CMOS technology. This LNA employs
gm-boosted and current reused techniques to achieve better noise performance and
lower power consumption under the same gain requirement. The measured peak
voltage gain is 20.4dB at 54GHz excluding the loss of balun and open-drain stage.
The measured average noise figure is 9dB with a minimum of 7dB at 59GHz. The
IIP3 is –15dBm while the core area of LNA is 0.4 x 0.37 mm2 and consumes 7.2mW
with supply voltage of 1.2V. Using the same current reused technique, the W-bandLNA is designed in a 65-nm CMOS technology. The measured S21 is 11dB at
103GHz with 10dB noise figure. The IIP3 is about –14dBm while the area is 0.17 x
0.38 mm2 and consumes 25mW with 1.5V supply.
The W-band receiver is designed in CMOS 65-nm technology with 1V supply.
This highly integrated receiver, which employs the heterodyne architecture, provides
the function of PMMW imaging and data communication. The proposed frequency
doubler using an injection-locked oscillator operated at the voltage-limited region can
reduce the complexity of frequency synthesizer. The simulated maximum conversion
gain is 42dB at 102GHz with bandwidth of 4GHz and noise figure of 12.2dB. The
IIP3 is about -26dBm while the area is 0.95 x 0.8 mm2 and consumes 110mW.
1. Introduction
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 3
1.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Passive Millimeter-wave Imaging System and CMOS Technology
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Passive Millimeter-wave Imaging System . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Spatial Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Thermal Sensitivity . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Scanning and Beam-forming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Intermediate Frequency and Dispersion . . . . . . . . . . . . . . . . . . . . . 8
2.3 Receiver Architecture and Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Phase-array Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 RF Front-end for Passive Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Specifications for Data Communication . . . . . . . . . . . . . . . . . . . . . 12
2.5 CMOS Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 MOS Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Marchand Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Micro-strip Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Passive Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3. V-band and W-band Circuit Design Techniques
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Topologies of LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Common-source LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Common-gate LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Gm-boosted LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 V-band Fully Differential Gm-boosted LNA. . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Proposed V-band fully differential LNA. . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Simulated Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 W-band LNA with Current-reused Technique. . . . . . . . . . . . . . . . . . . . . 42
3.4.1 W-band LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Experimental Results. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 45
3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4. Design of W-band Receiver
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Receiver Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Circuit Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Building Blocks of W-band Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 1st Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.4 2nd Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.5 Baseband Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.6 Frequency Doubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.7 Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.8 LO Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70
4.4.9 Simulation Results of Receiver Chain . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5. Conclusions
[1.1] L. Yujiri, M. Shoucri and P. Moffa, "Passive Millimeter Wave Imaging,"Microwave Magazine, IEEE , vol.4, no.3, pp. 39-50, Sept. 2003[1.2] B. Razavi, "A 60-GHz CMOS Receiver Front-end," IEEE Journal ofSolid-State Circuits, vol.41, no.1, pp. 17-22, Jan. 2006
[1.3] B. Heydari, M. Bohsali, E. Adabi and A.M. Niknejad, "Low-Power mm-Wave Components up to 104GHz in 90nm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers. , vol., no., pp.200-597, 11-15 Feb.2007
[1.4] K.W. Tang, M. Khanpour, P. Garcia, C. Gamier and S.P. Voinigescu, "65-nm CMOS, W-Band Receivers for Imaging Applications," IEEE Custom Integrated Circuits Conference, vol., no., pp.749-752, 16-19 Sept. 2007
[2.1] L. Yujiri, M. Shoucri and P. Moffa, "Passive Millimeter Wave Imaging," IEEE Microwave Magazine, vol.4, no.3, pp. 39-50, Sept. 2003
[2.2] A.H. Lettington, D. Dunn, M. Attia and I.M. Blankson, "Passive Millimeter-wave Imaging Architectures," Journal of Optics A: Pure and Applied Optics, vol.5,no.4, pp. S103-S110, 2003
[2.3] A.H. Lettington, Q.H. Hong, A. Dean, R. Appleby and D.G. Gleed, "An Overview of Recent Advances in Passive Millimetre Wave Imaging in the UK,"Proc. SPIE , vol.2744, pp. 146-153, June 1996
[2.4] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan and A. Komijani, "Integrated Phased Array Systems in Silicon," Proceedings of the IEEE , vol.93, no.9,pp.1637-1655, Sept. 2005
[2.5] A.H. Lettington, D. Dunn, N.E. Alexander, L. Wabby, B.N. Lyons, R. Doyle,J. Walshe, M.F. Attia and I. Blankson, "Design and Development of A High-performance Passive Millimeter-wave Imager for Aeronautical Applications," Opt. Eng. vol.44, 093202, Sept. 2005
[2.6] B. Heydari, M. Bohsali, E. Adabi and A.M. Niknejad, "Low-Power mm-Wave Components up to 104GHz in 90nm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.200-597, 11-15 Feb. 2007
[2.7] K.W. Tang, M. Khanpour, P. Garcia, C. Gamier and S.P. Voinigescu, "65-nm CMOS, W-Band Receivers for Imaging Applications," IEEE Custom Integrated Circuits Conference, pp.749-752, 16-19 Sept. 2007
[2.8] IEEE 802.15-07/942r2
[2.9] B. Razavi, RF Microelectronics, Prentice Hall, pp. 166-180, 1998
[2.10] M.C. Tsai, "A New Compact Wideband Balun," IEEE MTT-S InternationalMicrowave Symposium Digest, pp.141-143 vol.1, 1993
[2.11] H.Y. Chang, P.S. Wu, T.W. Huang, H. Wang, C.L. Chang and J.G.J. Chern, "Design and Analysis of CMOS Broad-band Compact High-linearity Modulators for Gigabit Microwave/Millimeter-wave Applications," IEEE Transactions on Microwave Theory and Techniques, vol.54, no.1, pp. 20-30, Jan. 2006
[3.1] A. Parsa and B. Razavi, "A 60GHz CMOS Receiver Using a 30GHz LO,"IEEE International Solid-State Circuits Conference Digest of Technical Papers,pp.190-606, Feb. 2008
[3.2] C.H. Doan, S. Emami, A.M. Niknejad and R.W. Brodersen, "Millimeter-wave CMOS design," IEEE Journal of Solid-State Circuit, vol.40, no.1, pp. 144-155, Jan.2005
[3.3] Chieh-Min Lo, Chin-Shen Lin and Huei Wang, "A Miniature V-band 3-Stage Cascode LNA in 0.13μm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 1254-1263, Feb. 2006
[3.4] B. Heydari, M. Bohsali, E. Adabi and A.M. Niknejad, "Low-Power mm-Wave Components up to 104GHz in 90nm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.200-597, Feb. 2007.
[3.5] S. Pellerano, Y. Palaskas and K. Soumyanath, "A 64 GHz LNA With 15.5 dB Gain and 6.5 dB NF in 90 nm CMOS," IEEE Journal of Solid-State Circuits,vol.43, no.7, pp.1542-1552, July 2008
[3.6] C. Weyers, P. Mayr, J.W. Kunze and U. Langmann, "A 22.3dB Voltage Gain 6.1dB NF 60GHz LNA in 65nm CMOS with Differential Output," IEEE International Solid-State Circuits Conference Digest of Technical Papers,pp.192-606, Feb. 2008
[3.7] A. Babakhani, X. Guan, A. Komijani, A. Natarajan and A. Hajimiri, "A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas," IEEE Journal of Solid-State Circuits , vol.41, no.12, pp.2795-2806,Dec. 2006
[3.8] B.A. Floyd, "V-band and W-band SiGe Bipolar Low-noise Amplifiers and Voltage-controlled Oscillators," IEEE Radio Frequency Integrated Circuits Symposiu, Digest of Papers, pp. 295-298, June 2004
[3.9] J. Powell, H. Kim, and C.G. Sodini, "A 77-GHz Receiver Front End for Passive Imaging," IEEE Radio Frequency Integrated Circuits Symposium,pp.145-148, 3-5 June 2007
[3.10] S. T. Nicolson and S. P. Voinigescu, "Methodology for Simultaneous Noise and Impedance Matching in W-Band LNAs," IEEE Compound Semiconductor Integrated Circuit Symposium, pp.279-282, Nov. 2006
[3.11] Xiaoyong Li, Low Noise Design Techniques for Radio Frequency Integrated Circuits, PhD. Dissertation, pp.33-58 , University of Washington, 2004
[3.12] B. Razavi, RF Microelectronics, Prentice Hall, pp. 166-180, 1998
[3.14] G. Gonzalez, Microwave Transistor Amplifiers, Prentice Hall, pp. 240-242,1996
[4.1] A. Babakhani, X. Guan, A. Komijani, A. Natarajan and A. Hajimiri, "A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas," IEEE Journal of Solid-State Circuits, vol.41, no.12, pp.2795-2806,Dec. 2006
[4.2] K.W. Tang, M. Khanpour, P. Garcia, C. Gamier and S.P. Voinigescu, "65-nm CMOS, W-Band Receivers for Imaging Applications," IEEE Custom Integrated Circuits Conference , pp.749-752, Sept. 2007
[4.3] S.P. Voinigescu, S.T. Nicolson, M. Khanpour, K.K.W. Tang, K.H.K. Yau, N. Seyedfathi, A. Timonov, A. Nachman, G. Eleftheriades, P. Schvan and M.T. Yang, "CMOS SOCs at 100 GHz: System Architectures, Device Characterization, and IC Design Examples," IEEE International Symposium on Circuits and Systems, pp.1971-1974, May 2007
[4.4] D. Ham and A. Hajimiri, "Concepts and methods in optimization of integrated LC VCOs," IEEE Journal of Solid-State Circuits, vol.36, no.6, pp.896-909, Jun 2001
[4.5] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, vol.39, no.9, pp. 1415-1424, Sept. 2004
[4.6] L. Zhang, B. Ciftcioglu and H. Wu, "A 1V, 1mW, 4GHz Injection-Locked Oscillator for High-Performance Clocking," IEEE Custom Integrated Circuits Conference, pp.309-312, 16-19 Sept. 2007
[4.7] S.K. Reynolds, B.A. Floyd, U.R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher and M. Soyuer, "A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications," IEEE Journal of Solid-State Circuits, vol.41, no.12, pp.2820-2831, Dec. 2006
[4.8] J. Powell, H. Kim and C.G. Sodini, "A 77-GHz Receiver Front End for Passive Imaging," IEEE Radio Frequency Integrated Circuits Symposium, pp.145-148, 3-5 June 2007
[4.9] S.T. Nicolson, P. Chevalier, A. Chantre, B. Sautreuil and S.P. Voinigescu, "A 77-79-GHz Doppler Radar Transceiver in Silicon," IEEE Compound Semiconductor Integrated Circuit Symposium, pp.1-4, 14-17 Oct. 2007
[4.10] M. Khanpour, K.W. Tang, P. Garcia and S.P. Voinigescu, "A Wideband W-Band Receiver Front-End in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol.43, no.8, pp.1717-1730, Aug. 2008
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊