跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丁嘉鼎
研究生(外文):Chia-Din Ting
論文名稱:寬動態範圍及低失真的語音類比數位轉換器
論文名稱(外文):An Audio Analog-to-Digital Converter with Wide Dynamic Range and Low Distortion
指導教授:李泰成
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:90
中文關鍵詞:語音類比數位轉換器三角積分調變器
外文關鍵詞:audio analog-to-digital convertersigma-delta modulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來由於消費性產品大幅增加,如手機、MP3 Player…等,其音頻訊號自然為主要處理對象。如何將音頻轉換成數位訊號或數位訊號轉換成類比訊號且可保持高解析度?其三角積分調變器,為主要解決方式。

此論文中將探討聯電90奈米製程下音訊類比數位轉換器,其測試晶片驗證下,可得到96dB的動態範圍(DR)及-93dB 的總諧振雜訊失真加雜訊(THD+N)的結果。並且在使用2.5伏的供應電源時,需要消耗1毫安培的電流。在此調變器中使用了動態調整誤差器,其可將數位到類比轉換過程所產生的誤差作二階的雜訊抑制,並且可以將因訊號功率小所產生的許多單頻雜訊移出訊號頻帶之外。
In recent years, increases by huge grow up in the consuming products such as cell-phone and MP3 Player. How to change audio signal into digital signal processing and keep high resolution to overcome limitations from the poor component matching and reduced power supply levels that accompany these technologies? Sigma-Delta (ΔΣ) modulations are well-suited to the implementation of analog interfaces in digital communication and signal processing systems.

A second-order multi-bit ΔΣ modulator for audio analog-to-digital converter is presented. The design uses a second-order mismatch-shaping algorithm to reduce the mismatch requirements of the DAC unity elements and optimized to minimize the delay introduced in the feedback loop. At an oversampling ratio of 64, an experimental implementation of the modulator integrated in a 90-nm CMOS technology that achieves a 96-dB dynamic range and -93-dB THD+N at a Nquist rate of 48-KHz. The power consumption of the converter is 2.5-mW, from a single 2.5-V supply voltage.
Table of Contents



Table of Contents I
List of Figures III
List of Tables VII


Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2

Chapter 2 Fundamentals of Sigma-Delta Converter 5
2.1 Introduction 5
2.2 Data Converter Performance Metrics 6
2.3 Quantization Noise Analysis 6
2.4 Oversampling 8
2.5 First-Order Sigma-Delta Modulator 10
2.6 Second-Order Sigma-Delta Modulator 12
2.7 High-Order Sigma-Delta Modulator 13
2.8 Multi-Stage (Cascade, MASH) Sigma-Delta Modulator 14
2.9 Multi-Bit Sigma-Delta Modulator 16
2.10 Summary 19

Chapter 3 Design and Implementation of a Multi-Bit Sigma- Delta Modulator 21
3.1 Sigma-Delta Modulator Architecture 21
3.1.1 Modulator Coefficients 22
3.1.2 5-Bit Quantizer 24
3.1.3 5-Bit SC Digital-to-Analog Converters 26
3.1.4 Tree-Structured Second-Order Mismatch-Shaping 27
3.2 Analysis Circuit Noidealities 30
3.2.1 Finite Operational Amplifier Gain and GBW 30
3.2.2 Minimum Input Capacitor 34
3.2.3 Minimum Input Switches 35
3.2.4 Noise Effect in Stray-Insensitive SC Integrator 38
3.3 OTA Topology Selection 40
3.4 Summary 41

Chapter 4 Circuit Implementation 43
4.1 Introduction 43
4.2 Sampling Circuit 43
4.3 Miller CMOS Operational Amplifier 44
4.4 SC Integrator Circuit 46
4.5 Voltage Comparator 47
4.6 5-Bit Flash ADC 48
4.7 Wide-Swing Constant-Gm Bias Circuit 49
4.8 The Simulation Results of Multi-Bit Second-Order ΔΣ Modulator 50
4.9 Layout and Floorplan 54
4.10 Summary 55

Chapter 5 Test and Experimental Results 57
5.1 Introduction 57
5.2 Test Setup 57
5.2.1 Test Equipment 57
5.2.2 Print Circuit Board Design 58
5.3 Experimental Results 59
5.4 Summary 60

Chapter 6 Conclusions 61
6.1 Conclusions 61
6.2 Future Works 61

Bibliography 65
[1]B.-S. Song, “CMOS A/D converter design,” Mixed-Signal Integrated Circuit Design Workshop, Section A, 2002.
[2]R. Stee’le, “Delta modulation systems,” Wiley, New York 1975.
[3]H. Inose and Y. Yasuda, “A unity-bit coding method by negative feedback,” in Proc. IEEE, pp.1524-1535, Nov. 1963.
[4]J. Candy and G. Temes, “Oversampling methods for A/D and D/A conversion,” in Oversampling Delta-Sigma Data Converters, IEEE Press.
[5]F. Halsall, “Multimedia communications –applications, networks, protocols and standards,” Addison Wesley, 2001.
[6]R. Schreier and G. Temes, “Understanding delta-sigma data converters,” John Wiley & Sons, IEEE Press.
[7]K. Uyttenhove, A. Marques and M. Steyaert, “A 6-bit 1 GHz acquisition speed CMOS flash ADC with digital error correction,” in IEEE Custom Integrated Circuits Conference, pp. 249-252, May 2000.
[8]C. Culter, “Transmission systems employing quantization” US Patent No. 2,927,962, 1996.
[9]Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T. Yoshitome, “A 16-bit overampling A-to-D conversion technology using triple-integration noise shaping,” in IEEE J. Solid-State Circuits, Vol. 22, pp. 921-929, Mar.1987.
[10]M. Rebeschini, N. van Bavel, P. Rakers, R. Greene, J. Caldwell, and J. Haug, “A 16-bit 160-KHz CMOS A/D converter using sigma-delta modulation,” in IEEE J. Solid-State Circuits, Vol. 29, pp. 431-440, Apr.1994.
[11]J. Crols and M. Seyaert, “Switched-Opamp: An approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” in IEEE J. Solid-State Circuits, Vol. 29, pp. 936-942, Aug. 1994.
[12]L. Longo and M. Copeland, “A 13 bit ISDN-band oversampling ADC using two-stage third order noise shaping,” in IEEE Custom Integrated Circuit Conference, pp. 212-212, May 1988.
[13]L. Williams and B. Wooley, “ Third-order cascaded sigma-delta modulators,” in IEEE Trans. on Circuits and System II, vol. 38, pp. 489-498, May 1991.
[14]B. P. Brandt and B. A. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” in IEEE J. Solid-State Circuits, Vol. 26, pp. 1746-1756, Dec. 1991.
[15]R. Baird and T. Fiez, “A low oversampling ratio 14-b 500-KHz D-S ADC with self-calibrated multibit DAC,” in IEEE J. Solid-State Circuits, Vol. 31, pp. 312-320, Mar. 1991.
[16]T. Cataltepe, L. Larson and G. Temes, “Digitally corrected multibit data converter,” in IEEE Int. Symp. Circuits Syst., pp. 647-650, May. 1989.
[17]M. Sarhang-Nejad and G. Temes, “A high-resolution multibit ADC with digital correction and relaxed amplifier requirements,” in IEEE J. Solid-State Circuits, Vol. 28, pp. 648-660, June 1993.
[18]C. Thompson and S. Bernadas, “A digitally-corrected 20b sigma-delta modulator,” in ISSCC Digest of Tech. Papers, pp. 192-195, Feb. 1994.
[19]M. J.M. Pelgrom, H. P. Tuinhout and M. Vertregt, “Transistor matching in analog CMOS applications,” IEEE IEDM, pp. 915-918, 1998.
[20]L. Carley, “A noise-shaping coder topology for 15+ bit converters,” in IEEE J. Solid-State Circuits, Vol. 24, pp. 267-273, Apr. 1989.
[21]J. Fattaruso, S. Kiriaki, M. de Wit, and G. Warwar, “Self-calibration techniques for a second-order multibit sigma-delta modulator,” in IEEE J. Solid-State Circuits, Vol. 28, pp. 1216-1223, Dec. 1993.
[22]F. Chen and B. Leung, “A high resolution multibit sigma-delta modulator with individual level averaging,” in IEEE J. Solid-State Circuits, Vol. 30, pp. 453-460, Apr. 1995.
[23]R. Baird and T. Fiez, “ Linearity enhancement of multibit A/D and D/A converters using data weighted averaging,” in IEEE Trans. on Circuits and Systems II, Vol. CAS-42, pp. 753-762, Dec. 1995.
[24]T. Kwan, R. Adams, and R. Libert, “A stereo multibit sigma delta DAC with asynchronous master-clock interface,” in IEEE J. Solid-State Circuits, Vol. 31, pp. 1881-1887, Dec. 1996.
[25]H. Lin, J. da Silva, B. Zhang, and R. Schreier, “Multi-bit DAC with noise-shaped element mismatch,” in IEEE Int. Symp. Circuits Syst., pp. 235-238, May 1996.
[26]R. Henderson and O. Nys, “Dynamic element matching techniques with arbitrary noise shaping function,” in IEEE Int. Symp. Circuits Syst., pp. 293-296, May 1996.
[27]I. Galton, “Spectral shaping of circuit errors in digital-to-analog converters,” in IEEE Trans. on Circuits and Systems II, Vol. CAS-44, pp. 808-817 Oct. 1997.
[28]B. Leung and S. Sutarja, “Multi-bit A/D converters incorporating a novel class of dynamic element matching techniques,” in IEEE Trans. on Circuits and Systems II, Vol. CAS-39, pp. 35-51, Jan. 1997.
[29]Pervez M. Aziz, et al., “An overview of sigma-delta converters: How a 1-bit ADC achieves more than 16-bit resolution”, http://repository.upenn.edu/ese-papers/136
[30]G. Lainey, R. Saintlaurens, and P. Senn, “Switched-capacitor second-order noise shaping coder,” in Electron. Lett., Vol. 19, pp. 149-150, Feb. 1983.
[31]K. Uyttenhove and M. Steyaert, “A 1.8 V, 6-bit, 1.3-GHz CMOS flash A/D converter in 0.25μm CMOS” in IEEE J. Solid-State Circuits, pp. 1115-1122, Vol. 38, July 2003.
[32]R. van de Plassche, “Integrated analog-to-digital and digital-to-analog converters” in Boston, MA: Kluwer Academic, 1994.
[33]E. Fogleman, I Galton, W. Huff, and H. Jensen, “A 3.3-V single-poly CMOS audio ADC delta-sigma modulator with 90-dB peak SINAD and 105-dB peak SFDR” in IEEE J. Solid-State Circuits, Vol. 35, pp. 297-307, Mar. 2000.
[34]E. Fogleman, Jared Welz, and I Galton, “A audio ADC sigma-delta modulator with 100-dB Peak SINAD and 102-dB DR using a second-order mismatch-shaping DAC.” in IEEE J. Solid-State Circuits, Vol. 36, pp. 339-348, Mar. 2001.
[35]K. Martin and A. Sedra, “ Effects of the Op Amp finite gain and bandwidth on the performance of switched-capacitor filters,” in IEEE Trans. on Circuits and Systems, pp. 822-829, Vol. 28, Aug. 1981.
[36]G. Temes, “Finite amplifier gain and bandwidth effects in switched-capacitor filters,” in IEEE J. Solid-State Circuits, Vol. 15, pp. 358-361, June 1980.
[37]Y. Geerts, A. Marques, M. Steyaert, and W. Sansen, “A 3.3-V 15-bit delta-sigma ADC with a signal bandwidth of 1.1MHz for ADSL applications,” in IEEE J. Solid-State Circuits, Vol. 34, pp. 927-936, July 1999.
[38]R. Schreier, J. Silva, J. Stennsgaard and G. Temes, “ Design-oriented estimation of thermal noise in switched-capacitor circuits,” in IEEE Trans. on Circuits and Systems I, Vol. 52, pp. 2358-2368, Nov. 2005.
[39]G. Yin, F. Op’t Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” in IEEE J. Solid-State Circuits, Vol. 27, pp. 208-211, Feb. 1992.
[40]David A. Johns, and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997.
[41]L. R. Carley, “Analog Layout Challenges,” in Analog VLSI: Signal and Information Processing, ed. M. Ismail and T. Fiez, San Francisco: McGraw-Hill, pp. 677-687, 1994.
[42]Texas Instruments Inc., “Four-channel, low-power audio codec for portable audio/telephony” TLV320AIC34 data Sheet, Nov. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top