跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊基男
研究生(外文):Chi-Nan Chuang
論文名稱:高速延遲鎖相迴路之設計
論文名稱(外文):Design of High Speed Delay-Locked Loops
指導教授:劉深淵
指導教授(外文):Shen-Iuan Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:122
中文關鍵詞:延遲鎖相迴路相位比較器充電泵延遲單元
外文關鍵詞:DLLPDCPDelay cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著晶片的面積以及時脈的頻率變快,高速時脈誤差消除電路與高速並且乾淨的時脈產生器的需求將變大,由於延遲鎖相迴路具有小面積、無抖動累積以及必然穩定的特性,所以在未來的應用上延遲鎖相迴路將變的越來越重要。
此論文提出了一個設計方法應用於延遲鎖相迴路為基礎的高速時脈產生器,藉由使用多週期鎖定的技巧,對於操作速度、多重相位的數目、充電泵以及相位比較器的工作速度上的限制將都被降低,所以延遲鎖相迴路將可操作在更高的速度,因此實現了一個40GHz鎖相迴路為基礎的高速時脈產生器。
接著,兩個寬範圍操作多相位延遲鎖相迴路的製作方法被提出,首先一個可以選擇鎖定週期數目的多週期延遲鎖定迴路被提出,藉由鎖定週期的選擇以及多週期的鎖定,將可提升迴路可以工作的範圍以及速度已達到更高速與寬範圍的操作,由於在高速上充電泵電流不匹配將導致嚴重的相位誤差,所以一個具有電流校正的充電泵被提出以降低相位誤差當延遲鎖相迴路高速運作時。此外我們提出了工作週期轉換成相位延遲的延遲單元,藉由工作週期轉換成相位延遲的方法,延遲單元將可工作在非常低的工作頻率以及寬範圍的操作,此外其具有小面積省電以及寬範圍操作的特點,延遲單元增益以及輸入週期的關係在此將被建立,因此使得在高速操作時抖動的特性將不會被降低。
最後,為了提升延遲鎖相迴路的速度,並聯的電壓控制延遲線的觀念被提出,因此在壓控制延遲線以及相位比較器與充電泵所需的速度將被降低,但是週期抖動將增加,為了降低週期抖動,我們提出了週期抖動校正的方法。
As the chip size and the clock frequency grow, the high-speed de-skew circuits and the high-speed clear clock sources are required. Due to the DLLs have the merits of the small area, no jitter accumulation and unconditional stable. So, the applications for the DLL will become more and more popular in the future clock design.
This dissertation provides the design method of the high speed DLL-based clock generator. By using the multi-period-locked technique, the limitation of operating frequency, number of multi-phase, CP and PD will relaxed. The DLL can achieve a higher operation. Therefore, a 40GHz clock DLL-based clock generator is realized.
Next, two methods are presented for the wide range multi-phase DLL. First, the multi-period-locked MDLL with a selectable locked period is presented. By using the selectable locked period in multi-period technique, the speed limitation and range at high frequency are relaxed, so the DLL can operate at higher frequency. Due to the current mismatch of the CP will result the serious static phase error when DLL locks at high frequency. The calibrated CP is also presented to reduce the static phase error. Second, the duty cycle to phase delay cell is presented. By transfers the duty cycle to phase, the delay cell can work at very low frequency and has the advance of small area, low power and wide range operation. The relation between the gain of a delay cell and input period will also be set up. Thus, the jitter performance at the high speed operation can be maintained.
Finally, to enhance the operation speed of a DLL, the parallel VCDLs are adopted. The speed requirement for VCDLs and the PDs is relaxed, but cycle jitter may increase. To reduce the cycle jitter, the cycle jitter calibration method is presented.
1. Introduction.............................................................................................................1

1.1 Motivation…………….……..…………………………...….….........................1
1.2 Thesis Organization…………………………………..…….………………..…2


2. The basics.................................................................................................................5

2.1 Basic analysis of the delay-locked loop..................................................................6
2.2 The basic building blocks in the DLL...................................................................12

3. A 40GHz DLL-based Clock Generator in 90nm CMOS Technology................17

3.1 Introduction..........................................................................................................18
3.2 The multi-period-locked DLL..............................................................................20
3.3 The start-controlled circuit...................................................................................22
3.4 A 40GHz DLL-based clock generator..................................................................27
3.5 Simulation results.................................................................................................32
3.6 Experimental Results............................................................................................34
3.7 Summary...............................................................................................................38


4. A 0.5~5GHz Wide-Range Multi-phase DLL with a Calibrated Charge Pump.......................................................................................................................39

4.1 Introduction...........................................................................................................40
4.2 Proposed Multi-period-locked MDLL..................................................................42
4.3 Circuit description..................................................................................................45
4.4 Simulation results...................................................................................................49
4.5 Experimental results...............................................................................................52
4.6 Summary................................................................................................................56

5. A 20MHz~3GHz Wide Range Multi-Phase Delay-Locked Loop.....57

5.1 Introduction............................................................................................................58
5.2 Conventional wide range VCDL............................................................................59
5.3 Proposed duty cycle to phase delay cell.................................................................62
5.4 Wide range multi-phase DLL.................................................................................65
5.5 Experimental Results..............................................................................................73
5.6 Summary.................................................................................................................78

6. A 3~8GHz Delay-Locked Loop with Cycle Jitter Calibration..........79

6.1 Introduction............................................................................................................80
6.2 The proposed Architecture.....................................................................................81
6.3 Cycle jitter calibration............................................................................................84
6.4 Circuit description..................................................................................................87
6.5 Simulation results...................................................................................................93
6.6 Experimental Results..............................................................................................95
6.7 Summary.................................................................................................................99

7. Conclusion.........................................................................................................101

7.1 Conclusion………………………………………………………………….......101
7.2 Future work……………………………………………………………….……102

Appendix A............................................................................................................103

A.1 Introduction.........................................................................................................104
A.2 Circuit description...............................................................................................106
A.3 Experimental results............................................................................................113
A.4 Summary.............................................................................................................116
Bibliography.........................................................................................................117
Publication List....................................................................................................121
[1].P. Larsson, “A 2-1600MHz CMOS Clock recovery PLL with low-Vdd capability,” IEEE J. Solid-State Circuits, vol. 34,pp. 1951-1960, Dec.1999.
[2].Y. Moon, J Choi, K Lee, D.K. Jeong, and M.K. Kim,”An all-analog multiphase delay-locked loop using a replica delay line for wied-range operation and low jitter performance,” IEEE J. Solid-State Circuits, vol. 35, pp. 337-384,Mar.2000.
[3].M.-J. Edward Lee and W. J. Dally et al. “Jitter Transfer Characteristics of Delay-Locked”, IEEE J. Solid-State Circuits, vol. 38, no. 4. pp. 614-621, Apr. 2003.
[4].J.G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
[5].F.M. Gradner, “Charge-pmp phase-locked loops” IEEE Transactions on Communications, vol.28, no. 11, pp. 1849-1858, Nov. 1980.
[6].P.R. Gray, and R. G. Meyer, “Analysis and design of analog integrated circuit” Third edition, Wiley and sons, 1993.
[7].B. Kim, D. Helman, and P. R. Gray, “A 30MHz hybrid analog/digital clock recovery circuit in 2um CMOS”, IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1385-1294, Dec. 1990.
[8].G. Chien and P. R. Gray, “A 900MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications”, IEEE J. Solid-State Circuits, vol. 35, pp. 1995-1996, Dec. 2000.
[9].H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A wide range delay-locked loop with a fixed latency of one clock cycle”, IEEE J. Solid-State Circuits, vol. 37, pp. 1021-1027, Aug. 2002.
[10].K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending”, Digest of Technical Papers, symposium on VLSI circuits, pp. 48-49, June 2000
[11].C. Y. Yang and S. I. Liu, “Fast-switching frequency synthesizer with a discriminator-added phase detector,” IEEE J. Solid-State Circuits, vol. 35, pp. 1445-1452, Oct. 2000.
[12].T. C. Lee and K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application,” IEEE J. Solid-State Circuits, vol. 41, pp. 1245-1252, Jun. 2006.
[13].A. Coban, M. H. Koroglu, and K. A. Ahmed,“ A 2.5-3.125Gb/s quad transceiver with second order analog DLL-based CDRs”, IEEE J. Solid-State Circuits, vol. 40, pp. 1940-1947, Sep. 2005.
[14].C. N. Chuang and S. I. Liu, “A 40GHz DLL-based clock generator in 90nm CMOS technology”, Dig. Tech. Papers, ISSCC, pp. 178-179, Feb. 2007.
[15].A. Maxim, “A 2-5GHz low jitter 0.13um CMOS PLL using a dynamic current matching charge-pump and a noise attenuating loop-filter”, Proceedings of the IEEE CICC, pp. 147-150, Oct. 2004.
[16].W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS low-phase-noise voltage-controlled ring oscillator,” IEEE Trans. Circuits and Syst. II, vol. 48, pp. 216–221, Feb. 2001.
[17].K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending”, Digest of Technical Papers, symposium on VLSI circuits, pp. 48-49, June 2000.
[18].Q. Du, J. Zhuang and T. Kwasniewski, “A low-phase noise, anti-harmonic programmable DLL frequency multiplier with period error compensation for spur reduction” IEEE trans. Circuits and Syst. II, vol. 53, no. 11, pp. 1205-1209, Nov. 2006.
[19].B. G. Kim and L. S. Kim ” A 250MHz-2-GHz wide-range delay-locked loop”, IEEE J. Solid-State Circuits, vol. 40, pp. 1310-1321, June. 2005.
[20].F. Mu and C. Svensson ” Pulsewidth control loop in high-speed CMOS clock buffers”, IEEE J. Solid-State Circuits, vol. 35, pp. 134-141, June. 2000.
[21].T. Hamamoto, K. Furutani, T. Kubo, S. Kawasaki, H. Iga, T. Kono, Y. Konishi, and T. Yoshihara, “A 667-Mb/s operating digital DLL architecture for 512-Mb DDR SDRAM,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 194–206, Jan. 2004.
[22].A. Coban, M. H. Koroglu, and K. A. Ahmed,“ A 2.5-3.125Gb/s quad transceiver with second order analog DLL-based CDRs”, IEEE J. Solid-State Circuits, vol. 40, pp. 1940-1947, Sep. 2005.
[23].B. Razavi, Design of Integrated Circuits for Optical Communications, p.264, McGraw Hill, 2002.
[24].C. N. Chuang and S. I. Liu, "A 0.5~5GHz wide-range multi-phase DLL with a calibrated charge pump", IEEE Trans. Circuits and Systems- II: Express Briefs, vol. 54, pp. 939-943, Nov. 2007.
[25].J. H. Kim, Y. H. Kwak, M. Kim, S. W. Kim and C. Kim, “A 120-MHz-1.8GHz CMOS DLL-based clock generator for dynamic frequency scaling”, IEEE J. Solid-State Circuits, vol. 41, pp. 2007-2082, Sept. 2006.
[26].R. J. Yang and S. I. Liu, "A 2.5GHz all-digital delay-locked loop in 0.13μm CMOS technology", IEEE Journal of Solid-State Circuits, SC-42, pp. 2338-2347, Nov. 2007.
[27].A. Alvandpour, R. K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, “A 3.5 GHz 32mW 150 nm multiphase clock generator for high-performance microprocessors,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 112–113, Feb. 2003.
[28].A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in CMOS VLSI circuits by input vector control,” IEEE Very Large Scale integration (VLSI) systems, vol. 12, pp. 140-153, Feb. 2004.
[29].B. Majkusiak, “Gate tunnel current in an MOS transistor”, IEEE Trans. Electron Devices, Vol. 37, pp. 1087-1092, April 1990.
[30].J. Pineda de Gyvez, and H. P. Tuinhout, “Threshold voltage mismatch and intra-die leakage current in digital CMOS circuits”, IEEE J. Solid-State Circuits, vol. 39, pp. 157-168, Jan. 2004.
[31].L.S.Y. Wong, and S. Hossain, A. Ta, J. Edvinsson. D.H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 2446-2456, Dec. 2004.
[32].R. Holzer, “A 1V CMOS PLL designed in high-leakage CMOS process operating at 10-700MHz,” IEEE International Solid-State Circuits Conference, pp. 272-273, Feb. 2002.
[33].I. Hwang, C. Kim and S. M. Kang, “A CMOS self-regulating VCO with low supply sensitivity”, IEEE J. Solid-State Circuits, vol. 39, pp. 42-48, Jan. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top