跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱帆
研究生(外文):Yu-Fan Chen
論文名稱:電場導向矽奈米線之電性與歐姆接觸研究
論文名稱(外文):The Electrical Characteristics of the Electric-Field Directed Growth of Silicon Nanowires and Ohmic Contact Formation
指導教授:李嗣涔李嗣涔引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:106
中文關鍵詞:矽奈米線歐姆接觸
外文關鍵詞:NanowiresOhmic Contact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用化學氣相沉積法經由VLS成長機制來成長電場導向及自組裝之未摻雜及微量摻雜的矽奈米線。並觀察到矽奈米線的成長會導向於外加相鄰電極間的局部電場並且跨接兩端電極。此外,我們發現鈦為一種適合電場導向成長矽奈米線的電極材料,並且能在經過兩階段快速熱退火處理後使電極與矽奈米線之間形成歐姆接觸。最後,藉由聚焦離子束輔助白金沉積,白金電極成功的被圖案化在矽奈米線上。再結合Conductive-AFM和TLM量測,可得到矽奈米線之電性以及鈦電極與矽奈米線之間的接觸電阻。
Electric-field-directed growth and self-assembly of undoped and lightly p-type doped silicon nanowires by chemical-vapor deposition via the vapor-liquid-solid (VLS) growth mechanism in a low pressure chemical vapor deposition (LPCVD) system is demonstrated. The nanowires appeared to align with the localized DC electric field and grew across the gap between two electrodes. Moreover, it is found that titanium is an adequate electrode material for electric-field-directed growth of silicon nanowires, and good ohmic contact between SiNWs and Ti electrode is achieved by means of two stage rapid thermal anneal. With the application of focus ion beam assisted platinum deposition, the platinum pad is patterned on the silicon nanowire. Combined with Conductive-AFM and transmission line measurement, the measurement of the electrical characteristics of silicon nanowire and contact resistance between nanowire and Ti electrode is carried out.
Chapter 1 Introduction................................................................................................1
Chapter 2 Experimental..............................................................................................5
2.1 Deposition system...................................................................................................5
2.1.1 Low pressure chemical vapor deposition (LPCVD)..................................5
2.2 Preparation.............................................................................................................7
2.3 Deposition Procedures............................................................................................9
2.4 Device Fabrication................................................................................................10
2.5 Dual Beam Focus Ion Beam System...................................................................11
2.5.1 Operation principle of Focus Ion Beam....................................................11
2.5.2 Basic function and application...................................................................12
2.5.3 Dual Beam Focus ion beam........................................................................13
2.6 Measurement Techniques....................................................................................15
2.6.1 Current – Voltage characteristics..............................................................15
2.6.2 Thickness Measurement of Metal electrodes............................................15
2.6.3 Characterization of Silicon Nanowires..................................................... 15
2.6.4 Electrical properties measurement of single nanowire............................15
Chapter 3 The Electric-Field-Directed Growth of Silicon Nanowires on Different Materials of Electrode and Ohmic Contact Formation...................17
3.1 Vapor-Liquid-Solid (VLS) Mechanism...............................................................18
3.1.1 VLS- assisted silicon nanowire growth......................................................19
3.1.2 The role of the metal catalyst.....................................................................25
3.2 Electric-Field-Directed Growth of Silicon Nanowires......................................27
3.3 Sample Preparation..............................................................................................29
3.4 Results and Discussion.........................................................................................40
3.4.1 The growth of undoped SiNWs on Mo electrode............................................40
3.4.2 The growth of SiNWs on different materials of electrode.............................44
3.4.2-1 The growth of p-type doped SiNWs on the Al electrode....................47
3.4.2-2 The growth of undoped SiNWs on the Ni electrode...........................49
3.4.2-3 The growth of undoped SiNWs on the Ti electrode...........................53
3.4.2-4 The growth of lightly p-type doped SiNWs on the Ti electrode........57
3.4.2-5 Conclusions............................................................................................61
3.4.3 Ohmic contact formation.................................................................................62
3.4.3-1 Nearly ohmic contact with undoped silicon nanowire.......................65
3.4.3-2 Ohmic contact with lightly p-type doped silcon nanowire................69
Chapter 4 Contact Resistance Measurement...........................................................73
4.1 Contact resistance measurement by Transmission Line Model.......................73
4.2 Focus ion beam (FIB) assisted platinum deposition..........................................75
4.2.1 Operation principle of Focused Ion Beam...............................................75
4.2.2 Ion beam assisted platinum deposition.....................................................75
4.2.3 Experiment..................................................................................................76
4.3 Electrical characteristics of single silicon nanowire measured by conductive atomic force microscope (C-AFM)......................................................................79
4.3.1 Operation principle of AFM.......................................................................79
4.3.2 Operation principle of contact mode AFM...............................................79
4.3.3 Operation principle of Conductive AFM..................................................80
4.3.4 Experiment..................................................................................................80
4.4 Results and Discussion.........................................................................................86
4.4.1 The electrical characteristics and contact resistance measurement of undoped silicon nanowire..........................................................................86
4.4.2 The electrical characteristics and contact resistance measurement of lightly p-type doped silicon nanowire.......................................................90
4.4.3 Conclusions..................................................................................................94
Chapter 5 Conclusions...............................................................................................98
Reference...................................................................................................................100
Appendix A................................................................................................................106
[1] L. J. Lauhon, Mark S. Gudiksen, Charles M. Lieber, Phil. Trans. R. Soc. Lond. A (2004) 362,1247~1260
[2] Matt Law, Joshua Goldberger, and Peidong Yang, Annu. Rev. Mater. Res. 2004. 34:83-122
[3] S. Tans, A. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)
[4] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)
[5] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)
[6] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Nano Lett. 1, 453 (2001)
[7] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, Nano Lett. 2, 869 (2002)
[8] D. Appell, Nature (London) 419, 553 (2002)
[9] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003)
[10] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 73, 3396 (1998)
[11] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999)
[12] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471(2000)
[13] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2000)
[14] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 294,1313 (2001)
[15] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003)
[16] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002)
[17] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001)
[18] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999)
[19] S. Chung, J. Yu, J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000)
[20] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003)
[21] K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004)
[22] C. Y. Meng, B. L. Shih, S. C. Lee, J. Nanopart. Res. 7, 615 (2005)
[23] Y. Wang, K. Lew, T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, T. S. Mayer, Nano Lett. 5, 2139 (2005)
[24] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)
[25] G. Zheng, W. Lu, S. Jin, C. M. Lieber, Adv. Mater. 16, 1890 (2004)
[26] Y. Cui and C. M. Lieber, Science 291, 851 (2001)
[27] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997)
[28] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[29] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
[30] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003)
[31] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 71 (2000)
[32] R. S. Wagner ,W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[33] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)
[34] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 630 (2001)
[35] Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)
[36] B.R. Martin, S.K.St. Angelo, T.E. Mallouk, Adv. Funct. Mater. 12, 759 (2002)
[37] D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)
[38] M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, J. Appl. Phys. 91, 8549 (2002)
[39] L.A. Nagahara, I. Amlani, J. Lewenstein, R.K. Tsui, Appl. Phys. Lett. 80, 3826 (2002)
[40] L. J. Lauhon, M. S. Gudiksen, D. Wang and C. M. Lieber, Nature, 420, 57 (2002)
[41] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. F. Wang, M. Cabassi, T. S. Mayer and S. W. Novak, Appl. Phys. Lett., 85, 3101 (2004)
[42] X. Zhao, C. M.Wei, L. Yang, and M.Y. Chou1, Phys. Rev. Lett., 92, p236805 (2004)
[43] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature, 409, 66 (2001)
[44] J. S. Hwang, D. Ahn, S. H. Hong, H. K. Kim, S. W. Hwang, B. H. Jeon, and J. H. Choi, Appl. Phys. Lett., 85, 1636 (2004)
[45] (a) Cui, Y.; Lieber, C. M. Science 2001, 291, 851. (b) Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.; Lieber, C. M. Science 2001, 294, 1313.
[46] (a) Koo, S. M.; Li, Q.; Edelstein, M. D.; Richter, C. A.; Vogel, E. M. Nano Lett. 2005, 5, 2519. (b) Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. Nano Lett. 2006, 6, 973. (c) Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149. (d) Ng, H. T.; Han, J.; Yamada, Toshishige; Nguyen, P.; Chen, Y. P.;Meyyappan, M. Nano Lett. 2004, 4, 1247. (e) Bryllert, T.; Wernersson, L.-E.; Froberg, L. E.; Samuelson, L. Nanotechnology 2006, 17, S227.
[47] (a) Beckman, R.; Johnston-Halperin, E.; Luo, Y.; Green, J. E.; Heath, J. R. Science 2005, 310, 465. (b) Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Science 2003, 302, 1377.
[48] (a) Agarwal, A.; Lieber, C. M. Appl. Phys. A 2006, 85, 209. (b) Sirbuly, D. J.; Law, M.; Pauzauskie, P.; Yan, H.; Maslov, A. V.; Knutsen, K.; Ning, C.-Z.; Saykally, R. J.; Yang, P. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7800.
[49] (a) Zou, B. S.; Liu, R. B.; Wang, F. F.; Pan, A. L.; Cao, L.; Wang, Z. L. J. Phys. Chem. B 2006, 110, 12865. (b) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. (c) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. E.; Lieber, C. M. Nature 2001, 409, 66.
[50] Givargizov E. I., J. Chem. Physm. 31,20 (1975)
[51] A. Ural, Y. Li, H. Dai, Appl. Phys. Lett. 81, 3464 (2002)
[52] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)
[53] E., Joselevich, C. M. Lieber, Nano Lett. 2, 1137 (2002)
[54] L. Benedict, S. G. Louie, M. L. C|ohen, Phys. Rev. B 52, 8541 (1995)
[55] O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris, Nano letters 5, 705 (2005)
[56] Yung-Chen Lin, Kuo-Chang Lu, Nano letters 8, 3 (2008)
[57] B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishing, Boston, MA, 1995, p. 537.
[58] James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology, Prentice Hall, 2000, p.716
[59] S.M. Sze, Semiconductor Devices Physics and Technology second edition, 3, 95 (2002)
[60] http://ece-www.colorado.edu/~bart/book/resistiv.xls
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top