|
[1] W. E. Martin, “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett., vol.26, no.10, pp.562-564 (1975) [2] A. V. Maslov and D. S. Citrin, “Quantum-well optical modulator at terahertz frequencies,” J. Appl. Phys., vol. 93, no. 12, pp. 10131-10133 (2003) [3] Y. -H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J.E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon”, Nature, vol. 437, pp. 1334-1336 (2005) [4] Y. F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B, vol.8, pp. 2688-2696 (1973) [5] G. Ghosh , Handbook of thermo-optic coefficients of optical materials with applications, academic press, p.190 (1998) [6] M.W. Geis, S.J. Spector, R.C. Williamson, T.M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Tech. Lett., vol. 16, no. 11, pp. 2514-2516 (2004) [1] S. M. Sze, Physics of semiconductor devices, 2nd Edition [2] R. Braunstein, A. R. Moore, F. Herman "Intrinsic optical absorption in germanium-silicon alloys" Phys. Rev., vol. 109 num. 3, pp. 695 - 710 (1957) [3] J. Blake, “SIMOX (separation by implantation oxygen)�籸ncyclopedia of Physical Science and Technology, 3rd Edition, vol. 14, pp. 805-813 (2001) [4] K. Izumi, Y. Omura, M. Ishikawa, E. Sano , “SIMOX technology for CMOS LSIs,” VLSI Symp. Tech. Digest, pp.10-11 (1982) [5] M. Bruel , “Silicon on insulator material technology,” IEEE Electron. Lett., vol.31, p.1201-1202 (1995) [6] G. V. Treyz , “Silicon Mach-Zehnder waveguide interferometers operating 1.3um,” Electron. Lett., vol.27, no. 2, pp.118-120 (1991) [7] G. Cocorullo and I. Rendina , “Thermo-optical modulation at 1.5um silicon etalon,” Electron. Lett., vol. 28, pp.83-85 (1992) [8] R. A. Mayer, K. H. Jung, W. D. Lee. , D.-L. Kwong , and J. C. Campbell , “Thin-film thermo-optic GexSix Mach-Zehnder interferometer,” Opt. Lett., vol. 17, no. 24, pp. 1812-1814 (1992) [9] Y. Hida, H. Onose, and S. Imamura , “Polymer waveguide thermooptic switch with low electric power consumption at 1.3um,” IEEE Photon. Tech. Lett., vol. 5, pp.782-784 (1993) [10] R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett., vol. 15, no. 10, pp. 1366-1368 (2003) [11] F. Cantore and F. G. D. Corte, “1.55-um silicon-based reflection-type waveguide-integrated thermo-optic switch,” Opt. Eng., vol. 42, no. 10, pp. 2835-2840 (2003) [12] M. Iodice, P. M. Sarro, and M. Bellucci , “Transient analysis of a high-speed thermo-optic modulator integrated in all silicon waveguide,” Opt. Eng., vol. 42, pp.169-175 (2003) [13] E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express, vol. 12, pp. 588-592 (2004) [14] M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz , “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Teck. Lett., vol. 16, no. 11, pp. 2514-2516 (2004) [15] G. E. Stillman,V. M. Robbins, N. Tabatabaie, “Ill-V Compound semiconductor devices: optical detectors,” IEEE Trans. Electron. Dev., vol. ED-31, no. 11, pp. 1643- 1655 (1984) [16] W. C. Dash, R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77K and 300K,” Phys. Rev., vol. 99 no. 4, pp. 1151-1155 (1955) [17] R. F. Pottr , “Optical constants of germanium in spectral region from 0.5eV to 3.0eV,” Phys. Rev., vol. 150, no. 2, pp. 562 - 567 (1966) [18] P. B. Allen, M. Cardona, “Temperature dependence of the direct gap of Si and Ge,” Phys. Rev. B, vol. 27, no. 8, pp. 4760 - 4769 (1983) [1] S.-E. Lee, S.-J. Oh, S.-M. So, H.-D. Kim, S.-W. Chung and H.-C. Sohn, “Preparation of silicon-on-insulator wafer using spin etching and a subsequent selective etching process,” Jpn. J. Appl. Phys., vol. 41, pp. 5024-5029 (2002) [2] K. Sakaguchi, N. Sato, K. Yamagata, Y. Fujiyama, T. Yonehara, “Extremely high selective etching of porous Si for single etch-stop bond-and-etch-back silicon-on-insulator,” Jpn. J. Appl. Phys., vol. 34, pp. 842-847 (1995) [3] J. M. Nel *, T. C. Griffiths, L. van Schalkwyk, F. D. Auret, M. Hayes, N. van den Berg, ”The effect of etching on Ge(111) surfaces and Pd Schottky contacts,” Phys. Stat., sol. (c) 5, no.2, pp. 587-590 (2008) [4] Gan S., Li L., Nguyen T., Qi H., Hicks R.F., Yang M., ” Scanning tunneling microscopy of chemically cleaned germanium (100) surfaces,” Surface Science, 395, pp. 69-74 (1998) [5] K. R. Williams, R. S. Muller, “Etch rates for micromachining processing,” IEEE J. Microelectromech. Syst., vol. 5, no.4, pp. 256-269 (1996) [6] K. R. Williams, K. Gupta, M. Wasilik, “Etch rates for micromachining processing-part II,” IEEE J. Microelectromech. Syst., vol. 12, no.6, pp. 761- 778 (2003) [7] B. Schwartz, H. Robbins, “Chemical etching of germanium in solutions of HF, HNO3, H2O, and HC2H3O2,” J. Electrochem. Soc., vol. 111, no. 2, pp. 196-201 (1964) [1]http://www.mellesgriot.com/products/optics/gb_2_1.htm
|