跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瀅安
研究生(外文):Ying-An Huang
論文名稱:絕緣層上覆鍺熱光吸收調變器
論文名稱(外文):Thermo-Absorption Optical Modulators Based on Germanium-on-Insulator (GOI) Structure
指導教授:郭宇軒
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:50
中文關鍵詞:熱光調變器電熱結構絕緣層上覆鍺
外文關鍵詞:Thermo-opticmodulatorGermaniumElectro-thermo structureGOI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光具有低傳輸損耗、低干擾等優點,因此是最佳之通訊媒介,可大幅增加通訊速度。其中光調變器為最關鍵的元件之一,為現代光通訊不可或缺之元件。本論文旨在設計與量測熱光吸收調變器,以側向自我電熱加熱結構改變溫度,以調變材料之吸收曲線以及穿過之光強度。本論文研究、設計與製作調變器結構,建立一套GOI低溫黏合製程技術,能有效地控制鍺層厚度與表面均勻度。元件加熱方式乃利用半導體材料與金屬之間不同的電阻率,在加電壓的過程中因為不同電阻率造成不同的壓降,由於半導體材料的電阻值大於金屬的電阻值,造成大部分的壓降會落至半導體材料,使其溫度增加。此調變器主要以絕緣層上覆鍺結構來製作元件材料,因鍺與其他半導體材料相比,具有陡峭的光吸收係數曲線,故在單位溫度變化下,光吸收係數曲線即會有顯著的變化,且使用鍺為主要材料也有利於結合矽製程與光電系統。此外,結構中間加一層金屬反射器,可使得光線通過反射器反射在鍺層形成共振腔效果,提升有效光路徑,增加調變效果。本GOI熱光吸收光調變器,在0.8V與1.2V的偏壓下,造成元件本身的溫度改變,可觀察鍺的吸收曲線偏移。在1563nm的波長下,光調變對比度可達8.71dB。因此本論文成功驗證熱光吸收調變器為一有效且低操作電壓、高對比度,符合商用通訊波段之元件。
The optical communication has advantages in high capacity, low transmission loss, and low interference, therefore it is one of the best communication methods and can significantly enhance the communication speed. The optic modulator is indispensable part in modern high-speed optical communication system. This thesis study is focused on the design, fabrication, and measurement of novel thermo-absorption optical modulators, which utilize lateral self-resistive-heating method to change the device temperature and modulate the light intensity passing through the device. The heating mode utilizes the difference of resistivity between semiconductor materials and metals, thus most of the voltage drop is applied on the semiconductor region to increase the temperature due to its higher resistance. The modulator devices are based on the germanium-on-insulator (GOI) structure. We also establish a process of GOI bonding technology at low temperature that can effectively control the germanium thickness and the surface uniformity. Comparing with other semiconductor materials, germanium has a steep optical absorption curve and therefore the curve can move fast with varying temperature; the use of germanium as the device material is also beneficial to the integration of silicon process technology and electro-optical system. Besides, a bottom metal reflector structure is used to induce cavity effect and to enhance effective light path as well as modulation effect. When the GOI thermo-absorption optical modulator is biased at 0.8V or 1.2V, the increasing temperature causes absorption curve shift. The modulation contrast reaches 8.71dB under the 1563nm wavelength. Therefore this study demonstrated that the thermo-absorption optical modulator is an effective device with low-operation-voltage and high contrast ratio and suitable for optical communication and interconnects.
中文摘要......................................................... i
英文摘要........................................................ ii
目錄............................................................ iii
圖目錄...........................................................vi
表目錄.........................................................viii

第一章、 導論
1.1光纖通訊之發展及其應用........................................1
1.2電光調變器 VS. 電制吸收光調變器 VS. 熱光調變器................2
1.3論文架構......................................................4
參考文獻........................................................5



第二章、 理論基礎及文獻回顧
2.1 熱光吸收調變原理.............................................7
2.2 絕緣層上覆半導體製造技術.....................................9
2.3 熱光調變器設計..............................................12
參考文獻.......................................................17


第三章、 實驗方法
3.1 GOI低溫黏合法製作...........................................19
3.1.1 晶片切割與清洗...........................................20
3.1.2 長氧化層薄膜.............................................20
3.1.3 金屬薄膜蒸鍍.............................................21
3.1.4 環氧樹酯黏合.............................................22
3.1.5 研磨拋光.................................................22
3.1.6 濕蝕刻...................................................24
3.1.7 表面分析.................................................24
3.1.8 厚度量測.................................................26
3.2 元件製程步驟................................................29
3.2.1 光罩設計.................................................29
3.2.2 光微影術.................................................30
3.2.3 乾蝕刻...................................................31
3.2.4 掀離法...................................................31
參考文獻......................................................34


第四章、 量測系統與結果分析
4.1 量測系統....................................................35
4.1.1 反射光譜 VS. 電壓........................................38
4.1.2 光調變...................................................40
4.2 量測結果....................................................41
參考文獻.....................................................47
第五章、 結論
5.1 總結........................................................49
5.2 未來研究方向................................................50
[1] W. E. Martin, “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett., vol.26, no.10, pp.562-564 (1975)
[2] A. V. Maslov and D. S. Citrin, “Quantum-well optical modulator at terahertz frequencies,” J. Appl. Phys., vol. 93, no. 12, pp. 10131-10133 (2003)
[3] Y. -H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J.E. Roth, T. I. Kamins, D. A. B. Miller,
and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon”, Nature, vol. 437, pp. 1334-1336 (2005)
[4] Y. F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B, vol.8, pp. 2688-2696 (1973)
[5] G. Ghosh , Handbook of thermo-optic coefficients of optical materials with applications, academic press, p.190 (1998)
[6] M.W. Geis, S.J. Spector, R.C. Williamson, T.M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Tech. Lett., vol. 16, no. 11, pp. 2514-2516 (2004)
[1] S. M. Sze, Physics of semiconductor devices, 2nd Edition
[2] R. Braunstein, A. R. Moore, F. Herman "Intrinsic optical absorption in germanium-silicon alloys" Phys. Rev., vol. 109 num. 3, pp. 695 - 710 (1957)
[3] J. Blake, “SIMOX (separation by implantation oxygen)�籸ncyclopedia of Physical Science and Technology, 3rd Edition, vol. 14, pp. 805-813 (2001)
[4] K. Izumi, Y. Omura, M. Ishikawa, E. Sano , “SIMOX technology for CMOS LSIs,” VLSI Symp. Tech. Digest, pp.10-11 (1982)
[5] M. Bruel , “Silicon on insulator material technology,” IEEE Electron. Lett., vol.31, p.1201-1202 (1995)
[6] G. V. Treyz , “Silicon Mach-Zehnder waveguide interferometers operating 1.3um,” Electron. Lett., vol.27, no. 2, pp.118-120 (1991)
[7] G. Cocorullo and I. Rendina , “Thermo-optical modulation at 1.5um silicon etalon,” Electron. Lett., vol. 28, pp.83-85 (1992)
[8] R. A. Mayer, K. H. Jung, W. D. Lee. , D.-L. Kwong , and J. C. Campbell , “Thin-film thermo-optic GexSix Mach-Zehnder interferometer,” Opt. Lett., vol. 17, no. 24, pp. 1812-1814 (1992)
[9] Y. Hida, H. Onose, and S. Imamura , “Polymer waveguide thermooptic switch with low electric power consumption at 1.3um,” IEEE Photon. Tech. Lett., vol. 5, pp.782-784 (1993)
[10] R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett., vol. 15, no. 10, pp. 1366-1368 (2003)
[11] F. Cantore and F. G. D. Corte, “1.55-um silicon-based reflection-type waveguide-integrated thermo-optic switch,” Opt. Eng., vol. 42, no. 10, pp. 2835-2840 (2003)
[12] M. Iodice, P. M. Sarro, and M. Bellucci , “Transient analysis of a high-speed thermo-optic modulator integrated in all silicon waveguide,” Opt. Eng., vol. 42, pp.169-175 (2003)
[13] E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express, vol. 12, pp. 588-592 (2004)
[14] M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz , “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Teck. Lett., vol. 16, no. 11, pp. 2514-2516 (2004)
[15] G. E. Stillman,V. M. Robbins, N. Tabatabaie, “Ill-V Compound semiconductor devices: optical detectors,” IEEE Trans. Electron. Dev., vol. ED-31, no. 11, pp. 1643- 1655 (1984)
[16] W. C. Dash, R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77K and 300K,” Phys. Rev., vol. 99 no. 4, pp. 1151-1155 (1955)
[17] R. F. Pottr , “Optical constants of germanium in spectral region from 0.5eV to 3.0eV,” Phys. Rev., vol. 150, no. 2, pp. 562 - 567 (1966)
[18] P. B. Allen, M. Cardona, “Temperature dependence of the direct gap of Si and Ge,” Phys. Rev. B, vol. 27, no. 8, pp. 4760 - 4769 (1983)
[1] S.-E. Lee, S.-J. Oh, S.-M. So, H.-D. Kim, S.-W. Chung and H.-C. Sohn, “Preparation of silicon-on-insulator wafer using spin etching and a subsequent selective etching process,” Jpn. J. Appl. Phys., vol. 41, pp. 5024-5029 (2002)
[2] K. Sakaguchi, N. Sato, K. Yamagata, Y. Fujiyama, T. Yonehara, “Extremely high selective etching of porous Si for single etch-stop bond-and-etch-back silicon-on-insulator,” Jpn. J. Appl. Phys., vol. 34, pp. 842-847 (1995)
[3] J. M. Nel *, T. C. Griffiths, L. van Schalkwyk, F. D. Auret, M. Hayes, N. van den Berg, ”The effect of etching on Ge(111) surfaces and Pd Schottky contacts,” Phys. Stat., sol. (c) 5, no.2, pp. 587-590 (2008)
[4] Gan S., Li L., Nguyen T., Qi H., Hicks R.F., Yang M., ” Scanning tunneling microscopy of chemically cleaned germanium (100) surfaces,” Surface Science, 395, pp. 69-74 (1998)
[5] K. R. Williams, R. S. Muller, “Etch rates for micromachining processing,” IEEE J. Microelectromech. Syst., vol. 5, no.4, pp. 256-269 (1996)
[6] K. R. Williams, K. Gupta, M. Wasilik, “Etch rates for micromachining processing-part II,” IEEE J. Microelectromech. Syst., vol. 12, no.6, pp. 761- 778 (2003)
[7] B. Schwartz, H. Robbins, “Chemical etching of germanium in solutions of HF, HNO3, H2O, and HC2H3O2,” J. Electrochem. Soc., vol. 111, no. 2, pp. 196-201 (1964)
[1]http://www.mellesgriot.com/products/optics/gb_2_1.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top