跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳妍臻
研究生(外文):Yen-Jen Chen
論文名稱:應用於短距離通訊接收機之設計與研究
論文名稱(外文):Design and Research of CMOS Wireless Receiver for Short Range Communications
指導教授:呂學士
指導教授(外文):Shey-Shi Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:121
中文關鍵詞:短距離通訊接收機
外文關鍵詞:short range communicationsreceiver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The world is facing a common problem that the number of elderly people is increasing. Most of the senior citizen suffers from a chronic disease that should be monitored and observed for a long term. Therefore, Personal home care services become a new developing market. By using the personal home care system, the patient’s vital signals can be measured at any time any place at home so that the measuring devices should be portable and possess the ability of short-range wireless communication. As a result, short range, low data rates, low cost and low power dissipation are the important issues of the receiver. For these specifications, three kinds of receivers and a high integration of the transceiver are proposed in this dissertation. Four chips are implemented and fabricated in standard 0.35-um CMOS process in the thesis.

The first chip is a self-mixing OOK receiver which can operate at multiband (433 MHz, 868 MHz, 1.8 GHz and 2.4 GHz). A wide-bandwidth limiting amplifier is used to amplify the input RF signal. In the limiting amplifier, the output impedance of the gain stages possesses the inductive behavior. Besides, the self-mixing technique realized by the voltage multiplier is used for demodulation.

The second chip is a super-regenerative receiver with two different topologies. The proposed self-mixing technique is employed for envelope detection in the two topologies. Besides, not alike the conventional super-regenerative receiver, a current-reuse VCO utilized as the super-regenerative oscillator is controlled by the voltage DAC in the second topology.

To achieve greater immunity to noise, interference, and multi-path distortion, a spread spectrum receiver is proposed. Only the chirp generator which is traditionally realized by the SAW filter in the chirp spread spectrum system is developed in the thesis. The carrier frequency of the chirp signals is linearly increased from 875MHz to 925MHz (up-chirp) or decreased from 925MHz to 875MHz (down-chirp) by a step of 6.25MHz. Without using the SAW filter that is often not implemented in the CMOS process, higher integration can be achieved.

Finally, a 915MHz ISM band transceiver is presented. By varying the output of the frequency synthesizer, the chip can be used as a transmitter or a receiver, which is very attractive. The integration of the transceiver reduces not only the system power consumption but also the overall system cost, which would be beneficial to the development of the Personal home care services applications.
Chinese Abstract ------------------------------------------------------------------------------I
English Abstract ------------------------------------------------------------------------------III
Table of Contents -----------------------------------------------------------------------------V
List of Figures ---------------------------------------------------------------------------------IX
List of Tables ---------------------------------------------------------------------------------XV
Chapter 1 Introduction ---------------------------------------------------------------------1
1.1 Motivation --------------------------------------------------------------------------------1
1.2 Thesis Organization ---------------------------------------------------------------------2
Chapter 2 Receiver Architectures ------------------------------------------------------5
2.1 Introduction ------------------------------------------------------------------------------5
2.2 Receiver architectures ------------------------------------------------------------------5
2.2.1 Super-Heterodyne Receiver ---------------------------------------------------5
2.2.2 Image-Rejection Receiver: Hartley and Weaver ----------------------------8
2.2.3 Homodyne Receiver: ----------------------------------------------------------10
2.2.4 Low –IF Receiver --------------------------------------------------------------13
2.3 Summary --------------------------------------------------------------------------------13
Chapter 3 A Monolithic Self-mixing OOK CMOS Receiver for Wireless Sensor Network -------------------------------------------------------------15
3.1 Introduction -----------------------------------------------------------------------------15
3.2 System Architecture -------------------------------------------------------------------15
3.3 Circuit implementation ----------------------------------------------------------------17
3.3.1 Low noise amplifier (LNA) --------------------------------------------------17
3.3.2 Limiting Amplifier (LA) -----------------------------------------------------21
3.3.3 Demodulator: voltage multiplier, low pass filter and comparator ------24
3.3.4 Output data buffer -------------------------------------------------------------26
3.4 Measurement results -------------------------------------------------------------------26
3.4.1 Input matching (S11) of LNA ------------------------------------------------27
3.4.2 Final output ---------------------------------------------------------------------28
3.4.3 Bit error rate (BER) of the receiver -----------------------------------------28
3.5 Summary --------------------------------------------------------------------------------31
Chapter 4 A 915 MHz Super-Regenerative Receiver with Self-mixing Technique -------------------------------------------------------------------33
4.1 Introduction -----------------------------------------------------------------------------33
4.2 Theory of Super-Regenerative Receiver --------------------------------------------33
4.3 The Proposed Receiver Architecture ------------------------------------------------38
4.3.1 System architecture -----------------------------------------------------------38
4.3.2 SAR Auto-Calibration --------------------------------------------------------39
4.3.3 Quench Mechanism -----------------------------------------------------------40
4.3.4 Timing diagram ----------------------------------------------------------------41
4.4 Circuit Implementation ----------------------------------------------------------------42
4.4.1 Building Blocks of the first topology ---------------------------------------42
4.4.1.1 Low noise amplifier (LNA) ---------------------------------------------42
4.4.1.2 Voltage Controlled Oscillator (VCO) ----------------------------------42
4.4.1.3 Demodulator: envelope detector, pre-amplifier and comparator ---44
4.4.1.4 Digital Controller --------------------------------------------------------45
4.4.1.5 Current Output Digital to Analog Converter (DAC) ----------------47
4.4.2 Building Blocks of the second topology ------------------------------------48
4.4.2.1 Voltage Controlled Oscillator (VCO) ----------------------------------49
4.4.2.2 Voltage DAC --------------------------------------------------------------50
4.5 Measurement Results ------------------------------------------------------------------50
4.5.1 The first topology --------------------------------------------------------------50
4.4.1.1 Low noise amplifier (LNA) ---------------------------------------------53
4.5.1.2 VCO ------------------------------------------------------------------------54
4.5.1.3 ICritical searching mode ---------------------------------------------------55
4.5.1.4 Signal detection mode ---------------------------------------------------56
4.5.1.5 BER ------------------------------------------------------------------------56
4.5.2 The second topology ---------------------------------------------------------58
4.5.2.1 LNA ------------------------------------------------------------------------59
4.5.2.2 VCO ------------------------------------------------------------------------59
4.5.2.3 Signal Detection mode --------------------------------------------------59
4.6 Summary --------------------------------------------------------------------------------61
Chapter 5 A Spread Spectrum Receiver with Chirp Technique for Channel Band 875MHz~925MHz --------------------------------63
5.1 Introduction -----------------------------------------------------------------------------63
5.2 Theory of the spread spectrum receiver ---------------------------------------------68
5.2.1 Basic Chirp Theory ------------------------------------------------------------69
5.2.2 Binary Orthogonal keying (BOK) ------------------------------------------70
5.3 The Proposed Receiver Architecture ------------------------------------------------70
5.3.1 Frequency planning of the chirp signal -------------------------------------72
5.3.2 The proposed receiver architecture ------------------------------------------73
5.3.3 The proposed architecture of the chirp generator -------------------------74
5.3.4 Frequency synthesizer: phase locked-loop (PLL) and direct digital synthesizer (DDS) ------------------------------------------------------------75
5.4 Circuit Implementation ---------------------------------------------------------------77
5.4.1 Direct digital synthesizer (DDS) --------------------------------------------77
5.4.2 Filter -----------------------------------------------------------------------------77
5.4.3 Buffer chain --------------------------------------------------------------------79
5.4.4 Tri-mode divider ---------------------------------------------------------------80
5.4.5 Passive mixer -------------------------------------------------------------------81
5.5 Simulation Results ---------------------------------------------------------------------82
5.5.1 DDS -----------------------------------------------------------------------------82
5.5.2 Filter -----------------------------------------------------------------------------83
5.5.3 Buffer chain --------------------------------------------------------------------86
5.5.4 Tri-mode divider --------------------------------------------------------------87
5.5.5 Passive mixer -------------------------------------------------------------------88
5.5.6 Chirp generator ----------------------------------------------------------------88
5.5.7 Layout and Die photo ---------------------------------------------------------88
5.8 Summary --------------------------------------------------------------------------------88
Chapter 6 A Wireless RF Transceiver with Fractional-N Frequency Synthesizer -------------------------------------------------------------------91
6.1 Introduction -----------------------------------------------------------------------------91
6.2 Theory ----------------------------------------------------------------------------------91
6.3 System Architecture -------------------------------------------------------------------92
6.3.1 Fraction-N frequency synthesizer -------------------------------------------92
6.3.2 Transmitter ---------------------------------------------------------------------94
6.3.3 Receiver -------------------------------------------------------------------------94
6.4 Circuit implementation ----------------------------------------------------------------96
6.5 Measurement Results -----------------------------------------------------------------96
6.5.1 Measurement of the frequency synthesizer --------------------------------97
6.5.2 Measurement of the transmitter with the RF carrier supplied by the frequency synthesizer -------------------------------------------------------98
6.5.3 Measurement of the receiver with the LO signal supplied by the frequency synthesizer -------------------------------------------------------99
6.5.4 Measurement of the transceiver --------------------------------------------100
6.6 Summary ------------------------------------------------------------------------------102
Chapter 7 Conclusion --------------------------------------------------------------------105
Appendix A -----------------------------------------------------------------------------------109
Appendix B -----------------------------------------------------------------------------------113
Reference --------------------------------------------------------------------------------------117
[1]M. C. Huang, J. C. Huang, J. C. You, G. J. Jong, “The Wireless Sensor Network for Home-Care System Using ZigBee”, Intelligent Information Hiding and Multimedia Signal Processing, Volume 1, 26-28 Nov. 2007, pp.643-646.
[2]Zhaomin Zhang, Aiguo He, and Daming Wei, “A Mobile Teleconference System for Homecare Services”, Proceeding of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 2005, pp. 3935-3938.
[3]R. G. Lee, C. C. Lai, S. S. Chiang, H. S. Liu, “Design and Implementation of a Mobile-Care System over Wireless Sensor Network for Home Healthcare Applications ” Proceeding of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug . 2006, pp.6004-6007
[4]Andreas Springer, Mario Huemer, Leonhard Reindl, Clemens C. W. Ruppel, Alfred Pohl, Franz Seifert, Wolfgang Gugler, Robert Weigel, “A Robust Ultra-Broad-Band Wireless Communication System Using SAW Chirped Delay Lines,” IEEE Trans. Microwave Theory and Techniques, vol.46, Issue 12, part 2, pp.2213-2219, Dec. 2007.
[5]Pui-In Mak, Seng-Pan U, and Rui P. Martins, “Transceiver Architecture Selection: Review, State-of-the-Art Survey and Case Study,” IEEE CIRCUITS AND SYSTEMS MAGAZINE, Vol. 7, Issue 2, 2007
[6]C. Dehollain, M. Declercq, N. Joehl and J.-P. Curty, “A global survey on short range low power wireless data transmission architectures for ISM applications,” Proceedings of IEEE International Semiconductor Conference, Vol. 1, pp. 117-126, October 2001
[7]Jia-Soy Chuang, “RF CMOS Front-End Circuit Design for Bluetooth Receiver, ” Master thesis, Graduate Institute of Electrical Engineering, National Central University
[8]Behzad Razavi, “RF Microelectronics,” Prentice Hall Inc., 1998.
[9]Wei-I Li, “RF Front-end Circuits Suitable for Bio-medical Wireless Sensor Network,” Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University
[10]D. C. Daly and A. P. Chandrakasan, “An Energy-Efficient OOK Transceiver for Wireless Sensor Networks,” IEEE Journal of Solid-state Circuits, vol. 42, no. 5, pp.1003-1011, May. 2007.
[11]Y. T. Lin, T. Wang, S. S. Lu, and G. W. Huang, "A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network," IEEE Asian Solid-State Circuits Conference, vol., no., pp. 373-376, Nov. 2005.
[12]Hsiao-Chin Chen, “CMOS Receiver Front-End Circuit Design and LO Self-Mixing DC-Offset Rejection,” Doctoral Dissertation, Graduate Institute of Electronics Engineering, National Taiwan University
[13]H. M. Wu and C. Y. Yang, “A 3.125-GHz Limiting Amplifier for Optical Receiver System,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 210 – 213, 4-7 Dec. 2006
[14]M. Maadani and M. Atarodi,” A Low-Area, 0.18y''m CMOS, 10Gb/s Optical Receiver Analog Front End,” Proceedings of IEEE International Symposium on Circuits and Systems, pp. 3904-3907, May 2007.
[15]Behzad Razavi, “Design of Integrated Circuits for Optical Communications” McGraw-Hill Inc., International Edition, 2003.
[16]P.-C. Huang, Y.-H. Chen and C.-K. Wang, “A 2-V 10.7-MHz CMOS limiting amplifier/RSSI,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1474-1480, Oct. 2000.
[17]S. Y. Hsiao and C. Y. Wu, “A Parallel Structure for CMOS Four-Quadrant Analog Multipliers and Its Application to a 2-GHz RF Downconversion Mixer,” IEEE JSSC, vol. 33, no. 6, June 1998.
[18]E. H. Armstrong, “Some recent developments of regenerative receivers,” Proc. IRE, vol. 10, pp. 244-260, Aug. 1922.
[19]Ching-Jen Tung, “A 400-MHz Super-Regenerative Receiver with Digital Calibration for MICS Applications in 0.18-um CMOS,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.
[20]You-Kuang Chang, “Low Power Analog-to-Digital Converter and Super-Regenerative Receiver for Bio-Medical Applications,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.
[21]Jia-Yi Chen, M. P. Flynn, and J. P. Hayes, “A 3.6mW 2.4-GHz multi-channel super-regenerative receiver in 130nm CMOS,” Proceedings of the 2005 IEEE Custom Integrated Circuits Conference, Sept. 2005, pp. 361-364
[22]F. Moncunill-Geniz, P. Pala-Schonwalder and , O. Mas-Casals, “A Generic Approach to the Theory of Superregenerative Reception,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 1, pp. 54-70, Jan. 2005.
[23]J.-Y. Chen, M. P. Flynn, and J. P. Hayes, “A fully integrated auto-calibrated super-regenerative receiver in 0.13-um CMOS,” IEEE J. Solid-State Circuits, vol. 42, pp. 1976-1985, Sept. 2007.
[24]J.-Y. Chen, M. P. Flynn, and J. P. Hayes, “A fully integrated auto-calibrated super-regenerative receiver,” IEEE ISSCC Dig. Tech. Papers, pp.376-377, 2006.
[25]Norbert Joehl, Catherine Dehollain, Patrick Favre, Philippe Deval, and Michel Declercq, “A Low-Power 1-GHz Super-Regenerative Transceiver with Time-Shared PLL Control,” IEEE J. Solid-State Circuits, vol. 36, No.7, pp. 1025-1031, July 2001.
[26]A. Vouilloz, M. Declercq, and C. Deollain, “A low-power CMOS super-regenerative receiver at 1 GHz,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp.440-451, Mar. 2001.
[27]P. Favre, N. Joehl, A. Vouilloz, P. Deval , C. Dehollain, and M. Declercq, “A 2-V 600μ-A 1-GHz BiCMOS Super-Regenerative Receiver for ISM Applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2186-2196, June 1998.
[28]B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice Hall, 1998.
[29]JOHN A. SCHOEFF, “An Inherently Monotonic 12 Bit DAC” IEEE J. Solid-State Circuits, VOL. SC.14, no. 6, pp. 2186-2196, DECEMBER 1979.
[30]S.J. Yun, S. B. Shin, H. C. Choi, and S. G. Lee, “A 1mW Current-Reuse CMOS Differential LC-VCO with Low Phase Noise,” IEEE ISSCC Dig. Tech. Papers, pp. 540 - 616, Feb. 2005
[31]Nam-Jin Oh and Sang-Gug Lee, ” Current Reused LC VCOs,” IEEE Microwave and Wireless Components Letters, vol. 15, no.11, NOVEMBER 2005
[32]Fang-Ting Lee, ” A Fractional-N Frequency Synthesizer for 315/433/868/915 MHz ISM Bands,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.
[33]Springer, W. Gugler, M. Huemer, L. Reindl, C.C.W. Ruppel, R. Weigel, "Spread Spectrum Communications Using Chirp Signals", Proceedings EUROCOMM 2000, May 2000, pp. 166-170,
[34]An Ultra-Wide Band System with Chirp Spread Spectrum Transmission Technique
Peng Zhang and Hao Liu, “An Ultra-Wide Band System with Chirp Spread Spectrum Transmission Technique,” Proceedings of the 6th international conference on ITS Telecommunications (ITST2006), pp. 294-297, June 2006.
[35]Springer, M. Huemer, L. Reindl, C.C.W. Ruppel, A. Pohl, F. Seifert, W. Gugler, R. Weigel, "A robust ultra-broad-band wireless communication system using SAW chirped delay lines", IEEE Transactions on Microwave Theory and Technologies, vol. 46, no. 12, pp. 2213-2219, Dec, 1998.
[36]Steve Bible, Digital Communications [online] http://www.tapr.org/ss_intro.html
[37][online] http://kabuki.eecs.berkeley.edu/~rsn/papers/224termpap.pdf
[38]John Pinkney,” Low Complexity Indoor Wireless Data Links Using Chirp Spread Spectrum,” Calgary University.
[39]John Q.pinkney and Abu B.Sesay, et al, A Robust High Speed Indoor Wireless Communications System using Chirp Spread Spectrum, Proceeding of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Alberta, Canada, May 9-12 1999, pp.84-88.
[40]He Peng-fei, Lu Ying-hua, Zhang Hong-xin and Han Yu-nan, “Study of Ultra-Wideband Wireless Communication System Based on la/4 -DQPSK Chirp Spread Spectrum,” International Conference on Microwave and Millimeter Wave Technology, ICMMT 2007, pp.1-4
[41]M. Huemer, A. Pohl, W. Gugler, A. Springer, R. Weigel and F. Seifert, “Design and verification of a SAW based chirp spread spectrum system” IEEE International Microwave Symposium Digest 1998, Volume 1, pp. 189-198,
[42]A. Stelzer, K. Ettinger, J. Höftberger, J. Fenk, R. Weigel, “Fast and Accurate Ramp Generation with PLL-Stabilized 24-GHz SiGe VCO for FMCW and FSCW Applications,” IEEE International Microwave Symposium 2003, June 8–13, 2003, Philadelphia, Pennsylvania, USA, vol. 2, pp. 893–896.
[43]S. Scheiblhofer, S. Schuster and A. Stelzer, “Signal model and linearization for nonlinear chirps in FMCW Radar SAW-ID tag request” IEEE Trans. Microwave Theory and Techniques, vol.54, Issue 4, part 1, pp. 1477-1483, APRIL 2006.
[44]S. Scheiblhofer, S. Schuster and A. Stelzer, “High-Speed FMCW Radar Frequency Synthesizer With DDS Based Linearization,” IEEE Microwave and Wireless Components Letters, vol. 17, no.5, MAY 2007
[45]A. Stelzer, E. Kolmhofer and S. Scheiblhofer, “Fast 77 GHz Chirps with Direct Digital Synthesis and Phase Locked-Loop,” Proceedings Asia Pacific Microwave Conference 2005 (APMC), Dec. 4–7, 2005, Suzhou, China, vol. 3, pp. 1677–1680
[46]Jri Lee, "A 3-to-8-GHz Fast Hopping Frequency Synthesizer in 0.18-um CMOS Technology," IEEE J. Solid-State Circuits, vol. 41, pp. 566-573, March 2006.
[47]溫青樺, “Least Squared Approximation-based ROM-free Direct Digital frequency synthesizer circuit for communication systems,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.
[48]Chunlei Shi, Yue Wu and M. Ismail, “A novel low-power high-linearity CMOS filter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000 , Vol. 1 , Aug. 2000, pp. 60 -63
[49]Seok-Bae Park and M. Ismail, “A reconfigurable CMOS analog baseband for compact TDD wireless radio transceivers,” Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1386-1389, 2005.
[50]Sining Zhou, Sining Zhou, and Mau-Chung Frank Chang, “A CMOS Passive Mixer With Low Flicker Noise for Low-Power Direct-Conversion Receiver,” IEEE J. Solid-State Circuits, VOL. 40, no. 5, pp. 1084 - 1093, MAY 2005.
[51]Dae Hyun Sim, “CMOS I/Q demodulator using a high-isolation and linear mixer for 2 GHz operation,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Technical Papers, pp. 61-64, 6-8 June 2004
[52]K. Romer, F. Mattern, and E. Zurich, “The Design Space of Wireless Sensor Networks,” IEEE Wireless Communications, vol.11, no.6, pp.54-61, Dec. 2004.
[53]B. P. Otis, Y.H. Chee, R. Lu, N.M. Pletcher, and J.M. Rabaey, “An Ultra-Low Power MEMS-Based Two-Channel Transceiver for Wireless Sensor Networks,” Symp. VLSI Circuits, June 2004.
[54]Fang-Ting Lee, “A Fractional-N Frequency Synthesizer for 315/433/868/915 MHz ISM Bands,” Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University
[55]Wei-I Li, “RF Front-end Circuits Suitable for Bio-medical Wireless Sensor Network,” Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University
[56]GPSA, website:http://gpsa.apipa.org.tw/APIPA, ASIA Pacific Intellectual Property Association.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top