跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳春豪
研究生(外文):Chun-Hao Chen
論文名稱:前端放大器電路設計及感測系統整合
論文名稱(外文):Preamplifier Circuits Design and Sensing Systems Integration
指導教授:呂學士
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:115
中文關鍵詞:無線生醫感測器系統單晶片儀測放大器前端放大器差動減法放大器虛擬差動放大器低電壓低耗功可程式化增益
外文關鍵詞:bio-medical wireless sensorsystem-on-a-chipinstrumentation amplifierpreamplifierdifferential difference amplifierpseudo-differential amplifierlow-voltagelow-powerprogrammable gain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究前端放大器電路設計及感測器系統整合,目的在降低感測器之成本及縮小其體積,來增加其應用的範圍。縮小體積及降低功率後的感測器將會開啟可攜式或穿戴式健康感測應用。另一方面藉由更先進的半導體製程可降低感測器介面電路的操作電壓及消耗功率。

本研究提出整合數位、類比及射頻電路之系統單晶片(SOC),使用UMC 0.18 μm製程。此一系統單晶片包含前端放大器、類比數位轉換器、微控制器、無線收發機。前端放大器操作於1.8 V,消耗261 μW。類比數位轉換器(由楊育哲設計)操作於1.8 V,消耗135 μW,取樣率為25 KSample/s。微控制器操作頻率為500 KHz。無線收發機採用振幅移鍵調變(ASK)架構,ASK接收機(由林宥佐設計)操作於0.45 V,消耗1.36 mW,傳輸速率並可達到2 Mbps。而ASK發射機(由陳筱青設計),操作於1.73 V,消耗19 mW,傳輸速率可達到500 Kbps。ASK收發機皆傳輸於433 MHz。

利用此無線生醫感測系統單晶片與台大應力所黃榮山教授合作,整合C反應蛋白(CRP)蛋白質感測器,達成可無線傳輸之CRP無線生醫感測器。此CRP無線生醫感測器已發表於ISSCC 2006。

在感測器應用中,儀測放大器是相當常用的感測器放大器。為了更進一步降低儀測放大器的消耗功率、縮小面積及降低成本,本研究採用差動減法放大器(Differential Difference Amplifier)來完成低耗功及縮小面積之儀測放大器。首先用0.13 μm CMOS製程,設計一差動減法放大器操作於1.2 V,且消耗功率為2.4 μW。此差動減法放大器的開迴路增益為74.6 dB、單一增益頻率為50 KHz且輸入參考直流偏移電壓為480 μV。

為了更進一步應用,本研究也使用TSMC 0.35 μm製程,實作出數位可調增益之儀測放大器,其可調增益為24-38 dB,消耗18 μW。可與業界之無線胎壓感測器整合,因其可調增益之功能,可針對不同壓力感測器製程變異控制其增益,降低壓力感測器製程變異之損耗。

最後,為降低前端放大器操作電壓,以達到低耗功之目的。本論文亦提出在TSMC 0.35 μm製程下,使用1V操作的低電壓儀測放大器。其單一增益頻率為 2.5 KHz,消耗功率為680 nW。
The dissertation is a research about preamplifier circuits design and sensing systems integration to reduce the sensor cost and form factor. The lower cost and smaller form factor sensing systems will open new portable/wearable health monitoring applications. On the other hand, the low voltage and low power sensing interface circuits can be realized by the advance of CMOS semiconductor process.

In the first application, a system-on-a-chip (SOC) IC with digital, analog and RF circuits is proposed by using UMC 0.18 μm CMOS process. The SOC IC includes a preamplifier, an analog-to-digital converter (ADC), a micro-controller unit and a RF transceiver. The preamplifier operates at 1.8 V and consumes 261 μW. The ADC (designed by Yu-Che Yang) operates at 1.8 V, consumes 135 μW and has the 25 KSample/s sampling rate. The micro-controller unit operates at 500 KHz. The transceiver uses the ASK architecture and operates at 433 MHz. The ASK receiver (designed by Yu-Tso Lin) operates at 0.45 V, consumes 1.36 mW and has 2 Mbps bit rate. The ASK transmitter (designed by Hsiao-Chin Chen) operates at 1.73 V, consumes 19 mW and has 500 Kbps bit rate.

The bio-medical wireless (BMW) SOC can be integrated with C-reactive proteins (CRP) sensor fabricated by professor Long-Sun Huang’s research group in the Institute of Applied Mechanics, National Taiwan University. This CRP BMW sensor had been published in ISSCC 2006 by invited paper.

In sensor applications, the instrumentation amplifiers (IAs) are usually adopted. To reduce the power consumption, area and cost, we use the differential difference amplifier (DDA) to realize the low power and small area IA. First we use TSMC 0.13 μm CMOS technology to design a DDA operated at 1.2 V and consumed 2.4 μW. The DDA has the 74.6 dB open-loop gain, 50 KHz unity gain frequency and 480 μV input-referred dc offset voltage.

Furthermore, we also use TSMC 0.35 μm CMOS technology to design a programmable gain IA (PGIA). The gain is controlled by three digital bits and is from 24 to 38 dB. The power consumption of the PGIA is 18 μW operated at 3 V. It can be integrated with the wireless tire pressure sensors.

Finally, we proposed a new DDA architecture to reduce the power supply voltage for lower power consumption. The DDA operates at 1 V, consumes 680 nW, has unity gain frequency at 2.5 KHz and fabricated in TSMC 0.35 μm CMOS technology.
Table of Contents
List of Figures iv
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Dissertation organization 8
Chapter 2 Op-Amp Design Considerations 9
2.1 Passive and active devices review 9
2.1.1 Resistors 9
2.1.2 Capacitors 11
2.1.3 NMOS and PMOS 11
2.2 System view of the op-amp design 17
2.2.1 CMRR 17
2.2.2 Substrate noise coupling 18
Chapter 3 A Preamplifier Design for Bio-Medical Wireless Sensor 21
3.1 A preamplifier design 21
3.1.1 Circuit implementation 22
3.1.2 Measurement results 24
3.2 A bio-medical wireless sensor 25
3.2.1 Introduction 25
3.2.2 Principles of sensor/circuit design and experimental setup 27
3.2.3 Experimental Results 44
Chapter 4 Instrumentation Amplifiers Design 51
4.1 An instrumentation amplifier design 51
4.1.1 Instrumentation amplifier 51
4.1.2 Differential difference amplifier 54
4.1.3 Circuit implementation 56
4.1.4 Measurement results 60
4.2 An programmable gain IA design 65
4.2.1 Programmable gain IA 65
4.2.2 Rail-to-rail differential difference amplifier 66
4.2.3 Programmable gain stage 66
4.2.4 Experiment results 69
4.2.5 PGIA measurement with tire pressure sensor 73
Chapter 5 A Low-voltage Instrumentation Amplifier Design 77
5.1 A low-voltage differential difference amplifier 77
5.1.1 Pseudo-differential (PD) amplifier 77
5.1.2 CMRR enhancement pseudo differential amplifier 82
5.1.3 Fully symmetric fully balanced CMFF PD amplifier 86
5.1.4 The proposed CMRR and gain enhancement fully symmetric fully
5.2 A low-voltage instrumentation amplifier 97
5.3 Experimental results 98
Chapter 6 Conclusions 101
Reference 103
Appendix A 110
Reference
[1]2007 World Population Data Sheet, Population Reference Bureau in USA, http://www.prb.org/Publications/Datasheets/2007/2007WorldPopulationDataSheet.aspx, 2007.
[2]TinyOS, http://www.tinyos.net
[3]K. S. J. Pister, J. M. Kahn and B. E. Boser, "Smart Dust: Wireless Networks of Millimeter-Scale Sensor Nodes", Highlight Article in 1999 Electronics Research Laboratory Research Summary.
[4]David E. Culler and Hans Mulder “Smart Sensors to Network the World,” Scientific American, No. 29, pp.85-92, Dec. 2004.
[5]Roundy S., Wright P. K., Pister K. S. J., “Micro-Electrostatic Vibration-to- Electricity Converters”, ASME IMECE, Nov. 17-22, 2002, New Orleans, Louisiana.
[6]Randy Katz, "Mobile Networking for Smart Dust," Mobicom 99
[7]J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets and T. Tuan, "PicoRadios for Wireless Sensor Networks: The Next Challenge in Ultra-Low-Power Design”, Proceedings of the International Solid-State Circuits Conference, San Francisco, CA, February 3-7, 2002.
[8]R. Rieger, J. Taylor, A. Demosthenous, N. Donaldson and P. J. Langlois, “Design of Low-Noise Preamplifier for Nerve Cuff Electrode Recording”, IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1373-1378, Aug. 2003.
[9]C. J. Yen, W. Y. Chung and M. C. Chi, “Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications”, IEEE Trans. Circuits and Systems I, vol. 51, no. 4, pp. 691-699, April 2004.
[10]K. A. Ng and P. K. Chan, “A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications”, IEEE Trans. Circuits and Systems I, vol. 52, no. 11, pp. 2335-2347, Nov. 2005.
[11]P. Gray, P. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, New York: Wiley, 2001.
[12]D. M. Binkley, C. E. Hopper, S. D. Tucker, B. C. Moss, J. M. Rochelle and D. P. Foty, “A CAD Methodology for Optimizing Transistor Current and Sizing in Analog CMOS Design”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 225-237, Feb. 2003.
[13]P. R. Kinget, “Device Mismatch and Tradeoffs in the Design of Analog Circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212-1224, June 2005.
[14]D. M. Binkley, “ Tradeoffs and Optimization in Analog CMOS Design”, IEEE Inter. Conf. Mixed Design of Integrated Circuits and Systems, Ciechocinek, Poland, June 2007.
[15]Behzad Razavi, Design of Analog CMOS Integrated Circuits, Ohio: McGraw-Hill, 2000.
[16]Willy M.C. Sansen, Analog Design Essentials, Berlin: Springer, 2006.
[17]B. E. Owens, S. Adluri, P. Birrer, R. Shreeve, S. K. Arunachalam, K. Mayaram and T. S. Fiez, “Simulation and Measurement of Supply and Substrate Noise in Mixed-Signal ICs”, IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 382-391, Feb. 2005.
[18]T. Blalack and B. A. Wooley, “ The effects of switching noise on an oversampling A/D converter”, ISSCC Dig. Tech. Papers, pp.200-201, Feb. 1995.
[19]S. Hazenboom and T. S. Fiez, “ A Comparison of Substrate Noise Coupling in Lightly and Heavily Doped CMOS Processes for 2.4-GHz LNAs”, IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 574-587, March 2006.
[20]R. Gharpurey and R. G. Meyer, “ Modeling and Analysis of Substrate Coupling in Integrated Circuits”, IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 344-353, March 1996.
[21]R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A Compact Power-Efficient 3 V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries”, IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505-1512, March 1994.
[22]G. Hardiman, “Microarray Platforms-Comparisons and Contrasts”, Pharmacogenomics, vol. 5, p. 487, 2004.
[23]N. Gemma, S. O’uchi, H. Funaki, J. Okada, and S. Hongo, “CMOS Integrated DNA Chip for Quantitative DNA Analysis”, ISSCC Dig. Tech. Papers, pp.560-561, Feb. 2006.
[24]J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science, vol. 288, pp. 316-318, Apr., 2000.
[25]G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers,” Nature Biotechnology, vol.19, pp.856-860, Sept., 2001.
[26]Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, and Ch. Gerber, “Label-free Protein Assay Based on a Nanomechanical Cantilever Array,” Nanotechnology, vol. 14, pp. 86-90, 2003.
[27]R.-Z Hwang, L.-S. Huang, H.-S. Chang, C.-W. Wu, H.-C. Tien, S. Lin, and A. S.-Y. Lee, “A Novel Reusable Nanomechanics-Based Protein Biosensor with Electrical Manipulation,” IEEE MEMS, pp. 798-801, 2005.
[28]G. J. Blake, N. Rifai, J. E. Buring, P. M Ridker, “Blood Pressure, C-Reactive Protein, and Risk of Future Cardiovascular Events”, Circulation, vol. 108, pp. 2993-2999, 2003.
[29]C. H. Chen, R.-Z. Hwang, L.-S. Huang, S. Lin, H. C. Chen, Y. C. Yang, Y. T. Lin, S. A. Yu, Y. H. Wang, N.K. Chou and S.-S. Lu, “A Wireless Bio-MEMS Sensing system for C-Reactive Protein Detection Based on Nanomechanics”, ISSCC Dig. Tech. Papers, pp.562-563, Feb. 2006.
[30]M. A. M. Ramadan, A. K. Shrive, D. Holden, D. A. A. Myles, J. E. Volanakis, L. J. DeLucasd, and T. J. Greenhougha, “The three-dimensional structure of calcium-depleted human C-reactive protein from perfectly twinned crystals”, Acta Cryst., D58, pp. 992-1001, 2002.
[31]Y.-T. Lin, T. Wang, S.-S. Lu, and G. W. Huang, ”A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network”, A-SSCC, pp. 373-376, Nov., 2005.
[32]J. Sauerbery, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5V 1-uW Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, pp.1261-1264, July, 2003.
[33]H. Yu, and K. Najafi, “Low-Power Interface Circuits for Bio-Implantable Microsystems”, ISSCC Dig. Tech. Papers, pp.194-195, Feb., 2003.
[34]E. Säckinger and W. Guggenbühl, “A versatile building block the CMOS differential difference amplifier”, IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 287-294, April 1987.
[35]A. N. Mohieldin, E. Sanchez-Sinencio, J. Silva-Martinez, “Nonlinear effects in pseudo differential OTAs with CMFB”, IEEE Trans. Circuits and Systems II, vol. 50, no. 10, pp. 762-770, Oct. 2003.
[36]A. Tanaka, H. Okada, H. Kodama, H. Ishikawa, “A 1.1V 3.1-to-9.5GHz MB-OFDM UWB Transceiver in 90nm CMOS”, IEEE ISSCC Dig. Tech. Papers, pp. 398-407, Feb. 2006.
[37]A. N. Mohieldin, E. Sanchez-Sinencio, J. Silva-Martinez, “A Fully Balanced Pseudo-Differential OTA with Common-Mode Feedforward and Inherent Common-Mode Feedback Detector”, IEEE J. Solid-State Circuits, Vol. 38, No. 4, pp.663- 668, April 2003.
[38]L. Yao, M. S. J. Steyaert and W. Sansen, “A 1-V 140-μW 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS”, IEEE J. Solid-State Circuits, Vol. 39, No. 11, pp.1809- 1818, Nov. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊