跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣孟儒
研究生(外文):Meng-Ju Chiang
論文名稱:近橫向電磁合成傳輸線於互補金氧半導體製程上的設計與應用
論文名稱(外文):Design and Application of CMOS Synthetic Quasi-TEM Transmission Lines
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:167
中文關鍵詞:傳輸線合成波導微波單晶積體電路
外文關鍵詞:transmission line0ynthetic guidied-waveMonolithic Microwave Integrated Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文係探討近橫向電磁合成傳輸線於互補金氧半導體製程 (CMOS) 上的理論、實驗及設計實例,並將此設計應用於射頻前端電路之縮小化設計以達成射頻系統單晶化。一旦近橫向電磁合成傳輸線(也稱做互補式金屬傳輸線 (CCS TL))之理論被建立後,此近橫向電磁合成傳輸線於標準0.18微米1P6M互補金氧半導體製程上的設計準則也就被確定。而近橫向電磁合成傳輸線是由五種結構參數來合成其波導特性以滿足設計的需求,其傳輸線特色包含有:一、設計出的合成傳輸線之特徵阻抗範圍為8.62歐姆至104.0歐姆;二、合成傳輸線最高的慢波係數可達4.79;三、經由理論與實驗證實此合成傳輸線面積與品質係數 (Q-factor) 成一比例關係,此比例可以幫助設計者評估在複雜的單晶化電路設計時會造成損耗值。此外,本篇論文首次提出將互補金氧半導體製程上重要的金屬密度規範引入傳輸線的設計考量。依據本論文所提出的設計法則所設計出的Ka-band 互補金氧半導體製程功率分配器 (Power Divider)、 180度耦合器 (Rat-Race Coupler) 及 90度耦合器 (Branch-Line Coupler) 等設計實例,經由量測證明互補式金屬傳輸線是一廣泛且有用的合成波導結構。

本論文的第二部份是提出利用互補式金屬傳輸線 (CCS TL)所設計之互補金氧半導體製程 (CMOS) 螺旋型電感,此電感即使在兩個電感非常靠近的情況下也能提供非常有效且寬頻的遮蔽效應,藉此隔離透過互補金氧半導體製程基板傳遞的耦合能量,與傳統未使用遮蔽設計的電感相比,隔離度有40 dB的改善。此外,一設計實例來論證互補式金屬傳輸線 (CCS TL)提供一完整金屬面來隔絕不同層的電磁耦合。基於此概念,本論文提出利用多層互補式金屬傳輸線,設計極小面積的Ka-band 功率分配器 (Power Divider)、 180度耦合器 (Rat-Race Coupler),其中功率分配器與180度耦合器面積分別為180.0 um × 180.0 um與210.0 um × 480.0 um。這些電路元件非常適合應用於單晶微波積體電路之系統整合。

本論文的第三部份是提出一互補金氧半導體製程 (CMOS) 邊緣耦合之互補式金屬耦合線 (CCS CL) 的結構,並利用此結構來設計 3-dB方向耦合器 (Directional Coupler)與平衡不平衡轉換器 (Marchand Balun)。3-dB方向耦合器的面積為120.0 um × 240.0 um,電路的頻率使用範圍為 14.2 GHz至36.9 GHz展現出其頻寬為 22.7 GHz。平衡不平衡轉換器 (Marchand Balun) 的頻率使用範圍為15.5 GHz至40.0 GHz。這兩種經由耦合線結構所設計出電路在寬頻及縮小化的方面具有極大的優勢。

最後,本論文提出設計於互補金氧半導體製程 (CMOS) 之Ka-band低功率零損耗全積體化主動帶通濾波器。主動濾波器中品質係數提升的共振器是由互補式金屬傳輸線 (CCS TL) 與負阻抗產生器 (Cross-Coupled Pair) 所組成。主動帶通濾波器的面積為275.0 um × 420.0 um,且電路允許 DC 電壓控制品質係數的提升。而在消耗3.7 mW 功率的情況下,此濾波器的特性為頻寬18.8 % 、1-dB 壓縮點(1-dB compression point (P1dB))為 -4.6 dBm、雜訊指數(noise figure (NF))為 7.0 dB。 此外,在窄頻的主動帶通濾波器設計方面,頻寬為8.2 %,其他特性皆與寬頻設計者相似。此設計展現了極佳的濾波器特性得以實際應用在射頻系統晶片上(RF SOC (system on chip))。
This dissertation presents theories, experiments and design examples necessary for carrying out synthesized quasi-TEM transmission lines (TLs) that lead to miniaturization of RF CMOS front-ends, making possible for achieving RF SOC (system on chip). Once the theoretical means for accurate assessment of the CMOS synthetic quasi-TEM lines, also known as complementary-conducting-strip transmission line (CCS TL), is established, the design guidelines of the synthetic quasi-TEM TL based on the standard 0.18-um one-poly six-metal (1P6M) CMOS technology is established. The synthetic CMOS CCS TL consists of five structural parameters such as the periodicity of the unit cell (P), the area of the mesh ground plane (Wh), central patch (W), the width of the connecting arms (S) and the number of metal layer to synthesize its guiding characteristics meeting various design requirements. The CMOS CCS TL shows the following unique properties: First, the characteristic impedance as low as 8.62 Ω and as high as 104.0 Ω has been practically demonstrated. Second, high slow-wave factor (SWF) of 4.79 has been shown. Third, constant ratio of the area occupied by the CCS TL to the corresponding quality factor (Q-factor) has been theoretically and experimentally confirmed, rendering accurate assessment of chip size and Q-factor of CCS TL before commencing the complex by SOC design. The new finding enables the RF SOC design methodology to trade off chip size and performance in the process of circuit miniaturization. CMOS CCS TL meets the metal density requirement, which has never been discussed before in our extensive literature search. By following the proposed design methodology of the CCS TL, several practical RF building blocks at Ka-band such as CMOS power divider, rat-race coupler and branch-line coupler had been designed and measured to the greatest accuracy possible to reveal the powerfulness of the synthetic CMOS CCS TL.

Second, the complementary-conducting-strip transmission line (CCS TL) shows excellent shielding capability of 40.0 dB improvement over ordinary coupled inductors made on CMOS substrate. New CMOS spiral inductor made of CCS TL demands far less spacing between two CCS TL-based inductors from edge to edge when compared with the conventional spiral design. A design example is given to demonstrate excellent broadband shielding characteristic, taking advantage of the CCS TL ground plane which provides a complete conducting surface to isolate electromagnetic coupling between different layers. Based on such scheme, a multilayer CMOS CCS TL technology for the extremely compact RF hybrid designs has been developed. High-performance Ka-band power divider and rat-race coupler had been developed based on the stacked CMOS CCS TL scheme with effective area of 180.0 um × 180.0 um (4.21 × 10-4) and 210.0 um × 480.0 um (1.32 × 10-3), respectively. These miniaturized CCS-TL-based hybrids are ready for RF system integration in RF CMOS SOC.

Third, the concept of CCS TL is extended the analysis and design of the edge-coupled complementary-conducting-strip coupled line (CCS CL) structure and applied for designing the coupled-line-based 3-dB directional coupler and Marchand balun. The 3-dB directional coupler shows the bandwidth of 22.7 GHz from 14.2 GHz to 36.9 GHz with an area of 120.0 um × 240.0 um and Marchand balun covers the frequency range from 15.5 GHz to 40.0 GHz, demonstrating the advantages of broader bandwidth and miniaturization in CMOS RF application.
Finally, the low-power loss-free fully integrated active bandpass filters at Ka-band using a standard 0.18-um 1P6M CMOS technology are designed based on the CMOS CCS TL. A Q-enhanced resonator made of the complementary-conducting-strip transmission line (CCS TL), and an nMOS cross-coupled pair. The active size of bandpass filter measures 275.0 um × 420.0 um in size and the circuits allow DC voltage control for Q-enhancement. The bandpass filter has a 18.8 % bandwidth, exhibits a -4.6 dBm 1-dB compression point (P1dB) and noise figure (NF) of 7.0 dB while consuming 3.7 mW of DC power. The narrow-band bandpass filter with the bandwidth of 8.2 % exhibits similar performances with that of wide-band design. Such designs reveal excellent filter characteristics for practical application of RF SOC (system on chip).
Chapter 1 Introduction -------------------------------------------------------------------1
1.1 Introduction ----------------------------------------------------------------------1
1.2 Focus of This Dissertation -----------------------------------------------------3
1.3 List of Contributions -----------------------------------------------------------4
1.4 Organization of This Dissertation --------------------------------------------6

Chapter 2 CMOS Synthetic Quasi-TEM Transmission Line -------------9
2.1 CMOS Synthetic Quasi-TEM TL: Complementary-Conducting-Strip Transmission Line (CCS TL) ------------------------------------------------10
2.1.1 Meandered CCS TL Scheme -----------------------------------------10
2.1.2 Validity Checks of the Simulated Results ---------------------------14
2.2 Simulation Setups for Theoretical CCS TL Designs ---------------------17
2.3 Design of Meandered CMOS CCS TL -------------------------------------19
2.3.1 Special Limiting Designs of CCS TL -------------------------------19
2.3.2 CCS TL with Wh ≠ 0 ---------------------------------------------------20
2.3.3 Area-Influence Loss of CCS TL --------------------------------------23
2.4 Summary -----------------------------------------------------------------------29

Chapter 3 CMOS CCS-TL-Based Hybrids -------------------------------------31
3.1 Overview -----------------------------------------------------------------------31
3.2 Ka-Band CMOS Power Divider --------------------------------------------33
3.2.1 Guiding Properties of the Complementary-Conducting-Strip Transmission Line (CCS TL) for Divider Design -----------------33
3.2.2 Low Loss Two-Way 3-dB Wilkinson Power Divider Design ----36
3.2.3 Losses Calculation of Power Divider Design ----------------------40
3.3 Ka-Band CMOS Rat-Race Coupler ----------------------------------------42
3.3.1 Rat-Race Coupler Design ---------------------------------------------42
3.3.2 Losses Calculation of Rat-Race Coupler Design ------------------47
3.3.3 Discussion on Rat-Race Coupler Design ---------------------------48
3.4 Ka-Band CMOS Branch-Line Coupler ------------------------------------50
3.4.1 Guiding Properties of the Complementary-Conducting-Strip Transmission Line (CCS TL) for Branch-line Coupler Design --50
3.4.2 Implementation of Branch-Line Coupler Design ------------------54
3.4.3 Losses Calculation of Rat-Race Coupler Design ------------------64
3.5 Summary -----------------------------------------------------------------------65

Chapter 4 Effective Broadband Shielding Technology of CCS TL for Spiral Inductor and Hybrid Designs -------------------------------67
4.1 Overview -----------------------------------------------------------------------68
4.2 Spiral Inductors for Effective Broadband Shielding ---------------------71
4.2.1 Shielded CMOS Spiral Inductors - Operating Principle ----------71
4.2.2 The Characteristics of Shielded CMOS Inductors ----------------74
4.2.3 Electromagnetic Coupling of Shielded CMOS Inductors --------79
4.2.4 Electromagnetic Coupling of Shielded CMOS Inductors with Different Periodicity ---------------------------------------------------82
4.2.5 Summary ----------------------------------------------------------------84
4.3 Multilayer Complementary-Conducting-Strip Transmission Line
(CCS TL) Technology --------------------------------------------------------85
4.3.1 Guiding Properties of the Multilayer Complementary- Conducting-Strip Transmission Line (CCS TL) -------------------85
4.3.2 Implementation of Wilkinson Power Divider ----------------------88
4.3.3 Multilayer Rat-Race Coupler -----------------------------------------93
4.3.4 Summary ----------------------------------------------------------------96

Chapter 5 CCS Coupled-Line for 3-dB Directional Coupler and Marchand Balun Designs ----------------------------------------------97
5.1 Basic Theory -------------------------------------------------------------------98
5.1.1 Coupled Structure ------------------------------------------------------98
5.1.2 Design of Single-Section Directional Coupler --------------------100
5.1.3 Coupler Parameters ---------------------------------------------------101
5.2 Complementary-Conducting-Strip Coupled-Line (CCS CL) Designs
and Analyses -----------------------------------------------------------------102
5.2.1 Complementary-Conducting-Strip Coupled-Line (CCS CL) ---103
5.2.2 The Extracted Results of the Complementary-Conducting-Strip Coupled-Line (CCS CL) ---------------------------------------------105
5.3 3-dB Directional Coupler --------------------------------------------------108
5.3.1 Design Procedure for 3-dB Directional Coupler -----------------109
5.3.2 Experimental Results -------------------------------------------------110
5.3.3 Losses Calculation of 3-dB Directional Coupler -----------------112
5.4 Marchand Balun -------------------------------------------------------------113
5.4.1 Implementation of Marchand Balun -------------------------------114
5.4.2 Experimental Results -------------------------------------------------116
5.5 Summary ---------------------------------------------------------------------118

Chapter 6 CMOS Active Bandpass Filter -------------------------------------119
6.1 Overview ---------------------------------------------------------------------119
6.2 TL-Based Q-Enhanced Resonator ----------------------------------------121
6.2.1 Implementation of Resonator with Multilayer Synthetic Quasi- TEM Transmission Line ---------------------------------------------122
6.2.2 Q-Enhanced Resonator ----------------------------------------------125
6.2.3 Design Procedure -----------------------------------------------------128
6.3 CMOS Active Bandpass Filters -------------------------------------------130
6.3.1 Implementation -------------------------------------------------------130
6.3.2 Linearity and Compression ------------------------------------------139
6.3.3 Noise Figure and Figure of Merit (FOM) -------------------------146
6.4 Summary ---------------------------------------------------------------------149

Chapter 7 Conclusions ----------------------------------------------------------------151
7.1 Summary ---------------------------------------------------------------------151
7.2 Suggestions for Further Research -----------------------------------------154

Bibliography -------------------------------------------------------------------------------157

Appendix A Analysis of Coupled Lines ----------------------------------------169
A.1 Even- and Odd-Mode Analysis of Symmetrical Networks ------------169
A.1.1 Even-Mode Excitation -----------------------------------------------171
A.1.2 Odd-Mode Excitation ------------------------------------------------172
A.2 Network Results for Directional Coupler --------------------------------173

Appendix B Basic Theory for Active Bandpass Filter Design in Chapter 6 ----------------------------------------------------------------179
B.1 Chebyshev Lowpass Prototype Design and Its Scaling and
Conversion -------------------------------------------------------------------179
B.2 Impedance and Admittance Inverters -------------------------------------181
B.3 Practical Realization of Impedance and Admittance Inverters --------186

Publication List ---------------------------------------------------------------------------189
[1]T. Hirota, Y. Tarusawa, and H. Ogawa, “Uniplanar MMIC hybrids-A proposed new MMIC structure,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 6, pp. 576–581, Jun. 1987.
[2]T. Hasegawa, , and H. Ogawa, “Uniplanar monolithic frequency doublers,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 8,pp. 1249–1254, Aug. 1989.
[3]T. Hirota, S. Banba, and H. Ogawa, “A branchline hybrid using valley microstrip lines,” IEEE Trans. Microwave and Guided wave lett., vol. 2, no. 2, pp. 76–78, Feb. 1992.
[4]C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, E. MacRobbie, “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE ISSCC Solid State Circuits Conf, 2003, vol. 1, pp. 90-480.
[5]M. Zargari, M. Terrovitis, S. Jen, B. Kaczynski, M. Lee, M. Mack, S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. Si, K. Singh, A. Tabatabaei, D. Weber, D. Su, and B. Wooley, “A single-chip dual-band tri-mode transceiver for IEEE 802.11a/b/g Wireless LAN,’’ IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004.
[6]P. Zhang, L. Der, D. Guo, I. Sever, T. Bourdi, C. Lam, A. Zolfaghari, J. Chen, D. Gambetta, B. Cheng, S. Gowder, S. Hart, L. Huynh, T. Nguyen, and B. Razavi, “A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18um CMOS,’’ IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1932-1939, Sep. 2005.
[7]T. Maeda, H. Yano, S. Hori, N. Matsuno, T. Yamase, T. Tokairin, R. Walkington, N. Yoshida, K. Numata, K. Yanagisawa, Y. Takahashi, M. Fujii, and H. Hida, “Low-power-consumption direction-conversion CMOS transceiver for multistandard 5-GHz wireless LAN systems with channel bandwidths of 5-20MHz, ’’ IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 357-383, Feb. 2006.
[8]Y. Palaskas, A. Ravi, S. Pellerano, B. R. Carlton, M. A. Elmala, R. Bishop, G. Banerjee, R. B. Nicholls, S. K. Ling, N. Dinur, S. S. Taylor, and K. Soumyanath, “A 5-GHz 108-Mb/s 2X2 MIMO transceiver RFIC with fully integrated 20.5-dBm P1dB power amplifiers in 90-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2746-2756, Dec. 2006.
[9]C.-K. C. Tzuang, C.-H. Chang, H.-S. Wu, S. Wang, S.-X. Lee, C.-C. Chen, C.-Y. Hsu, K.-H. Tsai, and Johnsea Chen, “An X-Band CMOS multifunction-chip FMCW radar,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 2011-2014.
[10]H. Hasegawa, M. Furukawa, and H. Yanai, “Properties of microstrip line on Si-SiO2 system,’’ IEEE Trans. Microwave Theory Tech., vol. MTT-19, no. 11, pp. 869–881, Nov.1971.
[11]W. Durr, W. Erben, A. Shuppen, H. Dietrich, and H. Schumscher, “Investigation of microstrip and coplanar transmission lines on lossy silicon substrates without backside metallization,’’ IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 712–715, May 1998.
[12]K. Nashikawa, K. Shintani, and S. Yamakawa, “Characteristics of transmission lines fabricated by CMOS process with deep n-well implantation,’’ IEEE Trans. Microwave Theory Tech., vol. 54, no.2, pp. 589–598, Feb. 2006.
[13]C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,’’ IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[14]H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit design,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 472–477, Feb. 2005.
[15]P.-S. Wu, H.-Y. Chang, M.-D. Tsai, T.-W. Huang and H. Wang, “New miniature 15-20-GHz continuous-phase amplitude control MMICs using 0.18-um CMOS technology’’ IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 10–19, Jan. 2006.
[16]C.-H. Wang, Y.-H. Cho, C.-S. Lin, H. Wang, C.-H. Chen, D.-C. Niu, J. Yeh, C.-Y. Lee, and J. Chern, “A 60GHz transmitter with integrated antenna in 0.18um SiGe BiCMOS technology,” in IEEE ISSCC Solid State Circuits Conf., 2006, pp. 659-668.
[17]C.-M. Lo, C.-S. Lin, H. Wang, “A Miniature V-band 3-stage cascode LNA in 0.13um CMOS,” in IEEE ISSCC Solid State Circuits Conf., 2006, pp.1254-1263.
[18]G. Six, G. Prigent, E. Rius, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 301–305, Jan. 2005.
[19]L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, “Low-loss patterned ground shield interconnect transmission lines in advanced IC processes,’’ IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 561–570, Mar. 2007.
[20]Toyoda, T. Tokumitsu, and M. Aikawa, “Highly integrated three- dimensional MMIC single-chip receiver and transmitter,’’ IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2340–2346, Dec. 1996.
[21]T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nichikawa, and M. Aikawa, “Highly integrated three-dimensional MMIC technology applied to novel masterslice GaAs- and Si-MMIC’s,’’ IEEE Trans. Microwave Theory Tech., vol.32, no. 9, pp. 1334–1341, Sep. 1997.
[22]Toyoda, K. Nichikawa, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano, and M. Aikawa, “Three-dimensional masterslice MMIC on Si substrate,’’ IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2524–2530, Dec. 1997.
[23]K. Nichikawa, K. Kamogawa, K. Inoue, K. Onodera, T. Tokumitsu, M. Tanaka, I. Toyoda, and M. Hirano, “Miniaturized millimeter-wave masterslice 3-D MMIC amplifier and mixer,’’ IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1856–1862, Sep. 1999.
[24]C. Warns, W. Menzel, and H. Schumacher, “Transmission lines and passive elements for multilayer coplanar circuits on silicon,’’ IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 616–622, May 1998.
[25]K. Hettak, G. Morin, and M. Stubbs, “The integration of thin-film microstrip and coplanar technologies for reduced-size MMICs,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 283–291, Jan. 2005.
[26]M. Chirala, and C. Nguyen, “Multilayer Design Techniques for Extremely Miniaturized CMOS Microwave and Millimeter-Wave Distributed Passive Circuits,’’ IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4218–4224, Dec. 2006.
[27]C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[28]C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS Active Bandpass Filter Using Compacted Synthetic Quasi-TEM Lines at C-Band,” IEEE Trans. Microwave Theory and Tech., vol. 54, no.12, pp. 4548- 4555, Dec. 2006.
[29]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microwave Theory and Tech., vol. 55, no.12, part 1, pp. 2512-2520, Dec. 2007.
[30]S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1023-1026.
[31]M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “A Ka-band CMOS Wilkinson power divider using synthetic quasi-TEM transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 837- 839, Dec. 2007.
[32]B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “New and exact filling algorithms for layout density control,” in Proc. 12th Int. VLSI Design Conf, Jan. 1999, pp. 106–110.
[33]H.-H. Wu, H.-S. Wu and C.-K. C. Tzuang, "Synthesized high-impedance CMOS Thin-Film transmission line," in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., Sep. 8-10, 2004, pp. 302-304.
[34]H.-S. Wu, H.-J. Yang, C.-J. Peng and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 9, pp. 2713-2720, Sep. 2005.
[35]C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “A CMOS miniaturized C-Band active bandpass filter,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 772-775.
[36]T. Itoh, “Generalized spectral domain method for multiconductor printed lines and its applications to tunable suspended microstrips,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 983–987, Dec. 1978.
[37]H. Kamitsuna, “A very small, low-loss MMIC rat-race hybrid using elevated coplanar waveguides,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 337– 339, Aug. 1992.
[38]W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992.
[39]G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. on Components, Packaging, and Manufacturing Technology—part b, vol. 21, no. 2, pp. 171-176, May 1998.
[40]F. Schnieder and W. Heinrich, “Model of thin-film microstrip line for circuit design,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 1, pp. 104-110, Jan. 2004.
[41]R. E. Collin, Foundations for Microwave Engineering, 2nd Edition, New York: McGraw-Hill, 1992.
[42]Y.-C. Chiang and C.-Y. Chen, “Design of lumped element quadrature hybrid,” IEE Electronics Lett., vol. 34, pp. 465–467, Mar. 1998.
[43]L.-H. Lu, P. Bhattacharya, L. P. B. Katehi, and G. E. Ponchak, “X-band and K-band lumped Wilkinson power dividers with a micromachined technology,” in IEEE MTT-S Int. Dig., pp. 287–290, 2000.
[44]C.Y. Ng, M Chongcheawchamnan, I.D. Robertson, “Lumped-distributed hybrids in 3D-MMIC technology,” IEE Proc.-Microw. Antennas and Propag., vol. 151, no. 4, pp. 370–374, Aug. 2004.
[45]L.-H. Lu, Y.-T. Liao and C.-R. Wu, “A Miniaturized Wilkinson power divider with CMOS active inductors,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 11, pp. 775-777, Nov. 2005.
[46]K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 9, pp. 3453-3461, Sep. 2006.
[47]J.-G. Kim, and G.. M. Rebeiz, “Miniature four-way and two-way 24 GHz Wilkinson power divider in 0.13 μm CMOS,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 9, pp. 658-660, Sep. 2007.
[48]T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race couplers for uniplanar MMIC''s,” IEEE Trans. Microwave Theory and Tech., vol. 38, no. 3, pp. 270-275, Mar. 1990.
[49]Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,’’ in IEEE Microwave and millimeter-wave monolithic circuits symp., 1992, pp. 79-82.
[50]M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002.
[51]K. Hettak, G. A. Morin, and M. G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 5, pp. 1624-1635, May 2005.
[52]K. Hettak, G. A. Morin, and M. G. Stubbs, “A new miniaturized type of three-dimensional SiGe 90° hybrid coupler at 20 GHz using the meandering TFMS and stripline shunt stub loading,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 33-36.
[53]K. Nishikawa, T. Tokumitsu, and I. Toyoda, “Miniaturized Wilkinson power divider using three-dimensional MMIC technology,” IEEE Microwave Guided Wave Lett., vol. 6, no. 10, pp. 372–374, Oct. 1996.
[54]M. Ozgur, M. E. Zaghloul, and M. Gaitan, “Micromachined 28-GHz power divider in CMOS technology,” IEEE Microwave and Guided Wave Lett., vol. 10, no. 3, pp. 99–101, Mar. 2000.
[55]T. Ji, H. Yoon, J. K. Abraham, V. K. Varadan, “Ku-band antenna array feed with ferroelectric phase shifters on silicon distribution network,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 3, pp. 1131-1138, Mar. 2006.
[56]D. M. Pozar, Microwave Engineering, 3rd Edition, J. Wiley & Sons, 2005.
[57]L. G. Maloratsky, Passive RF and Microwave Integrated Circuits, Newnes, 2004.
[58]Y. Yun, “A novel microstrip-line structure employing a periodically perforated ground metal and its application to highly miniaturized and low-impedance passive components fabricated on GaAs MMIC,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 6, pp. 1951-1959, Jun. 2005.
[59]K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q inductors for wireless applications in a complementary silicon bipolar process,” IEEE J. of Solid-State Circuits, vol. 31, no. 1, pp. 4-9, Jan. 1996.
[60]J.Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Letters, vol. 14, no. 5, pp. 246−248, May 1993.
[61]J. H. Mikkelsen, O. K. Jensen, and T. Larsen, “Crosstalk coupling effects of CMOS co-planar spiral inductors,” in IEEE Proc. Custom Integrated Circuits Conf., 3-6 Oct. 2004, pp. 371-374.
[62]L. L. Pun, T. Yeung, J. Lau, F. J. R. Clément, and D. K. Su, “Substrate noise coupling through planar spiral inductor,” IEEE J. Solid-State Circuits, vol. 33, pp. 877–884, Jun. 1998.
[63]O. Adan, M. Fukumi, K. Higashi, T. Suyama, M. Miyamoto, and M. Hayashi, “Electromagnetic coupling effects in RFCMOS circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 39–42.
[64]C. P. Yue and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
[65]T. Blalack, Y. Leclercq, and C. P. Yue, “On-chip RF isolation techniques,” Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 2002, pp. 205-211.
[66]H.-Y. Tsui and J. Lau, “An on-chip vertical solenoid inductor design for multigigahertz CMOS RFIC,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 6, pp. 1883-1890, Jun. 2005.
[67]Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RFIC design,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 699–713, Aug. 2000.
[68]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of CMOS spiral inductors for effective broadband shielding,” in 36th EuMC European Microwave Conf., Sep. 2006, pp. 48-51.
[69]S. S. Mohan, Maria del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Simple Accurate Expressions for Planar Spiral Inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
[70]R. K. Mongia, I. J. Bahl, P. Bhartia and J.-S. Hong, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 2007.
[71]J. Lange, “Interdigital stripline quadrature hybrid,” IEEE Trans. Microwave Theory and Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969.
[72]J. Bahl, “Six-finger Lange coupler on 3 mil GaAs substrate using multilayer MMIC technology,” Microwave Optical Tech. Lett., vol. 30, pp. 322-327, Sep. 2001.
[73]M. K. Chirala, and B. A. Floyd, “Millimeter-wave Lange and ring-hybrid in a silicon technology for E-band applications couplers,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 1547–1550.
[74]J. P. Shlton, J. Wolfe, and R. V. Wagoner, “Tandem couplers and phase shifters for multi-octave bandwidth,” Microwaves, vol. 4, pp. 14-19, April 1965.
[75]S.-W. Moon, M. Han, J.-H. Oh, J.-K. Rhee and S.-D. Kim, “V-band CPW 3-dB tandem coupler using air-bridge structure,” IEEE Microwave and Wireless Comp. Lett., vol. 16, no. 4, pp. 149–151, April 2006.
[76]J. S. Izadian, “A new 6-18 GHz,-3 dB multisection hybrid coupler using asymmetric broadside, and edge coupled lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 1989, pp. 243–247.
[77]S. Bamba, and H. Ogawa, “Multilayer MMIC directional coupler using thin dielectric layers,” IEEE Trans. Microwave Theory and Tech., vol. 43, No. 6, pp. 1270-1275, Jun. 1995.
[78]T. Gokdemir, I. D. Robertson, Q. H. Wang, and A. A. Rezazadeh, “K/Ka-band coplanar waveguide directional coupler using a three-metal-level MMIC process,” IEEE Microwave Guided Wave. Lett., vol. 6, no. 2, pp. 76–78, Feb. 1996.
[79]H. Okazaki, and T. Hirota, “Multilayer MMIC broad-side coupler with a symmetric structure,” IEEE Microwave Guided Wave. Lett., vol. 7, no. 6, pp. 145–146, June 1997.
[80]N. Marchand, “Transmission line conversion transformers,’’ Electronics, vol. 17, pp. 142–145, Dec. 1944.
[81]W. Marczewski, and W. Niemyjski, “The overlapped microstrip for MICs and MMICs,’’ 1984 European Microwave Conf., pp. 166-171, Oct. 1984.
[82]Q. Sun, J. Yuan, V. T. Vo and A. A. Rezazadeh, “Design and realization of spiral Marchand balun using CPW multilayer GaAs technology,” in EuMA European Microwave Conf., pp. 68-71, Sep. 2006.
[83]J.-X. Liu, C.-Y. Hsu, H.-R. Chuang and C.-Y. Chen, “A 60-GHz millimeter-wave COMS Marchand balun,” in IEEE Radio Frequency Integrated Circuits Symp., 2007, pp. 445–448.
[84]R. Schwindt, and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, No. 7, pp. 1429-1434, July 1994.
[85]P.-S. Wu, C.-S. Lin, T.-W. Huang, H. Wang, Y.-C. Wang and C.-S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” 2005 European Gallium Arsenide and Other Semiconductor Application Symp., pp. 349–352, 2005.
[86]M. C. Tsai, “A new compact balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1993, pp. 141–143.
[87]S. A. Maas and K.-W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, No. 12, pp. 2330-2335, Dec.1993.
[88]C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, No. 6, pp. 1190-1199, Jun. 2007.
[89]P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microwave Theory and Tech., vol. 53, No. 10, pp. 3106-3114, Oct. 2005.
[90]S.-C. Tseng, C.-C. Meng, C.-H. Chang and G.-W. Huang “SiGe HBT Gilbert downconverter with an integrated miniaturized Marchand balun for UWB applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 2141–2144.
[91]K. S. Ang, and I. D. Robertson, “Analysis and design of impedance- transforming planar Marchand baluns,” IEEE Trans. Microwave Theory and Tech., vol. 49, No. 2, pp. 402-406, Feb. 2001.
[92]K. T. Chan, C. Y. Chen, A. Chin, J. C. Hsieh, J. Liu, T. S. Duh, and W. J. Lin, “40-GHz coplanar waveguide bandpass filters on silicon substrate,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 11, pp. 429-431, Nov. 2002.
[93]K. T. Chan, A. Chin, M.-F. Li, D.-L. Kwong, S. P. McAlister, D. S. Duh, W. J. Jin, and C. Y. Chang, “High-Performance Microwave Coplanar Bandpass and Bandstop Filters on Si Substrates,” IEEE Trans. Microwave Theory and Tech., vol. 51, no.9, pp. 2036-2040, Sep. 2003.
[94]G. Prigent, E. Rius, F. L. Pennec, S. L. Maguer, C. Quendo, G. Six, and H. Happy, “Design of narrow-band DBR planar filters in Si-BCB technology for millimeter-wave applications,” IEEE Trans. Microwave Theory and Tech., vol. 52, No. 3, pp. 1045-1050, Mar. 2004.
[95]H.-T. Tso and C.-N. Kuo, “40GHz miniature bandpass filter design in standard CMOS process,” in Topical Meeting on Silicon Monolithic Integrated Circuit in RF Systems., pp. 239-242, Sep. 2004.
[96]C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,’’ IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[97]S. Sun, J. Shi, L. Zhu, S. C. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-um CMOS technology,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 220-222, Mar. 2007.
[98]B. Dehlink, M. Engl, K. Aufinger, and H. Knapp, “Integrated bandpass filter at 77 GHz in SiGe technology,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 5, pp. 346-348, May 2007.
[99]W. Mouzannar, H. Ezzedine, L. Billonnet, B. Jarry, and P. Guillon, “Millimeter-wave band-pass filter using active matching principles,” in IEEE Russia Conf. Dig., Novosibirsk, Russia, pp. I.1–I.4, Sep. 1999.
[100]M. Ito, K. Maruhashi, S. Kishimoto, and K. Ohata, “60-GHz-abnd coplanar MMIC active filters,” IEEE Trans. Microw. Theory Tech., vol.52, no. 3, pp. 743-750, Mar. 2004.
[101]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,’’ IEEE J. Solid-State Circuits, vol.34, no. 5, pp. 717-724, May 1999.
[102]D. Hamand and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,’’ IEEE J. Solid-State Circuits, vol.36, no. 6, pp.896-909, Jun. 2001.
[103]G. Mattaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks, and coupling structures, Artech House, Norwood, MA, Ch. 8, 1980.
[104]Picoprobe Calibration Report
[105]D. Li, and Y. Tsividis, “Design techniques for automatically tuned integrated gigahertz-range active LC filters,’’ IEEE J. Solid-State Circuits, vol.37, no. 8, pp.967-977, Aug. 2002.
[106]S. A. Maas, Nonlinear microwave and RF circuits, Artech House, Norwood, MA, 2003.
[107]“Theory of Intermodulation Distortion Measurement (IMD),” Maury Microwave Application Note 5C-043, 1999.
[108]F. Ellinger, Radio frequency integrated circuits and technologies, Springer, 2007.
[109]K. T. Christensen, T. H. Lee, and E. Bruun, “A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz,” Analog Integrated Circuits and Signal Processing., vol. 42, no. 1, pp. 55-64, Jan. 2005.
[110]B. Georgescu, I. G. Finvers, and F. Ghannouchi, “2 GHz Q-enhanced active filter with low passband distortion and high dynamic range,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2029-2039, Sep. 2006.
[111]D. Li and Y. Tsividis, “A 1.9 GHz Si active LC filter with on-chip automatic tuning,” IEEE ISSCC Dig. Tech. Papers, pp. 368-369, Feb. 2001.
[112]X. He and W. B. Kuhn, “A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1618-1628, Aug. 2005.
[113]T. Soorapanth and S. S. Wong, “A 0-dB IL 2140 ± 30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 579-586, May 2002.
[114]K.-W. Fan, Z.-M. Tsai, H. Wang, and S.-K. Jeng, “K-band MMIC active band-pass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 19-21, Jan. 2005.
[115]J.-S. Hong and M. J. Lancaster, Microwave Filter for RF/Microwave Applications, New York: Wiiley, 2001.
[116]H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique,” IEEE Trans. Microw. Theory Tech., vol.55, no. 9, pp. 1854-1861, Sep. 2007.
[117]A. Müller, J. Hasch, and E. Kasper, “Microstrip coupler circuits on micromachined silicon substrates for F-band applications,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 462-465.
[118]C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen Raynaud, “Design of 60-GHz millimeter-wave CMOS RFIC-on-Chip bandpass filter,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 672-675.
[119]G. Prigent, F. Gianesello, D. Gloria, and C. Raynaud, “Bandpass filter for millimeter-wave applications up to 220 GHz integrated in advanced thin SOI CMOS technology on high resistivity substrate,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 676-679.
[120]B. Yang, E. Skafidas, and R. Evans, “Design of integrated millimeter wave microstrip interdigital bandpass filters on CMOS technology,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 680-683.
[121]B. Rejaei, A. Akhnoukh, M. Spirito, and L. Hayden, “Effect of a local ground and probe radiation on the microwave characterization of integrated inductors,” IEEE Trans. Microw. Theory Tech., vol.55, no. 10, pp. 2240-2247, Oct. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top