|
[1]T. Hirota, Y. Tarusawa, and H. Ogawa, “Uniplanar MMIC hybrids-A proposed new MMIC structure,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 6, pp. 576–581, Jun. 1987. [2]T. Hasegawa, , and H. Ogawa, “Uniplanar monolithic frequency doublers,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 8,pp. 1249–1254, Aug. 1989. [3]T. Hirota, S. Banba, and H. Ogawa, “A branchline hybrid using valley microstrip lines,” IEEE Trans. Microwave and Guided wave lett., vol. 2, no. 2, pp. 76–78, Feb. 1992. [4]C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, E. MacRobbie, “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE ISSCC Solid State Circuits Conf, 2003, vol. 1, pp. 90-480. [5]M. Zargari, M. Terrovitis, S. Jen, B. Kaczynski, M. Lee, M. Mack, S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. Si, K. Singh, A. Tabatabaei, D. Weber, D. Su, and B. Wooley, “A single-chip dual-band tri-mode transceiver for IEEE 802.11a/b/g Wireless LAN,’’ IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004. [6]P. Zhang, L. Der, D. Guo, I. Sever, T. Bourdi, C. Lam, A. Zolfaghari, J. Chen, D. Gambetta, B. Cheng, S. Gowder, S. Hart, L. Huynh, T. Nguyen, and B. Razavi, “A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18um CMOS,’’ IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1932-1939, Sep. 2005. [7]T. Maeda, H. Yano, S. Hori, N. Matsuno, T. Yamase, T. Tokairin, R. Walkington, N. Yoshida, K. Numata, K. Yanagisawa, Y. Takahashi, M. Fujii, and H. Hida, “Low-power-consumption direction-conversion CMOS transceiver for multistandard 5-GHz wireless LAN systems with channel bandwidths of 5-20MHz, ’’ IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 357-383, Feb. 2006. [8]Y. Palaskas, A. Ravi, S. Pellerano, B. R. Carlton, M. A. Elmala, R. Bishop, G. Banerjee, R. B. Nicholls, S. K. Ling, N. Dinur, S. S. Taylor, and K. Soumyanath, “A 5-GHz 108-Mb/s 2X2 MIMO transceiver RFIC with fully integrated 20.5-dBm P1dB power amplifiers in 90-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2746-2756, Dec. 2006. [9]C.-K. C. Tzuang, C.-H. Chang, H.-S. Wu, S. Wang, S.-X. Lee, C.-C. Chen, C.-Y. Hsu, K.-H. Tsai, and Johnsea Chen, “An X-Band CMOS multifunction-chip FMCW radar,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 2011-2014. [10]H. Hasegawa, M. Furukawa, and H. Yanai, “Properties of microstrip line on Si-SiO2 system,’’ IEEE Trans. Microwave Theory Tech., vol. MTT-19, no. 11, pp. 869–881, Nov.1971. [11]W. Durr, W. Erben, A. Shuppen, H. Dietrich, and H. Schumscher, “Investigation of microstrip and coplanar transmission lines on lossy silicon substrates without backside metallization,’’ IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 712–715, May 1998. [12]K. Nashikawa, K. Shintani, and S. Yamakawa, “Characteristics of transmission lines fabricated by CMOS process with deep n-well implantation,’’ IEEE Trans. Microwave Theory Tech., vol. 54, no.2, pp. 589–598, Feb. 2006. [13]C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,’’ IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005. [14]H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit design,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 472–477, Feb. 2005. [15]P.-S. Wu, H.-Y. Chang, M.-D. Tsai, T.-W. Huang and H. Wang, “New miniature 15-20-GHz continuous-phase amplitude control MMICs using 0.18-um CMOS technology’’ IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 10–19, Jan. 2006. [16]C.-H. Wang, Y.-H. Cho, C.-S. Lin, H. Wang, C.-H. Chen, D.-C. Niu, J. Yeh, C.-Y. Lee, and J. Chern, “A 60GHz transmitter with integrated antenna in 0.18um SiGe BiCMOS technology,” in IEEE ISSCC Solid State Circuits Conf., 2006, pp. 659-668. [17]C.-M. Lo, C.-S. Lin, H. Wang, “A Miniature V-band 3-stage cascode LNA in 0.13um CMOS,” in IEEE ISSCC Solid State Circuits Conf., 2006, pp.1254-1263. [18]G. Six, G. Prigent, E. Rius, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 301–305, Jan. 2005. [19]L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, “Low-loss patterned ground shield interconnect transmission lines in advanced IC processes,’’ IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 561–570, Mar. 2007. [20]Toyoda, T. Tokumitsu, and M. Aikawa, “Highly integrated three- dimensional MMIC single-chip receiver and transmitter,’’ IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2340–2346, Dec. 1996. [21]T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nichikawa, and M. Aikawa, “Highly integrated three-dimensional MMIC technology applied to novel masterslice GaAs- and Si-MMIC’s,’’ IEEE Trans. Microwave Theory Tech., vol.32, no. 9, pp. 1334–1341, Sep. 1997. [22]Toyoda, K. Nichikawa, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano, and M. Aikawa, “Three-dimensional masterslice MMIC on Si substrate,’’ IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2524–2530, Dec. 1997. [23]K. Nichikawa, K. Kamogawa, K. Inoue, K. Onodera, T. Tokumitsu, M. Tanaka, I. Toyoda, and M. Hirano, “Miniaturized millimeter-wave masterslice 3-D MMIC amplifier and mixer,’’ IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1856–1862, Sep. 1999. [24]C. Warns, W. Menzel, and H. Schumacher, “Transmission lines and passive elements for multilayer coplanar circuits on silicon,’’ IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 616–622, May 1998. [25]K. Hettak, G. Morin, and M. Stubbs, “The integration of thin-film microstrip and coplanar technologies for reduced-size MMICs,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 283–291, Jan. 2005. [26]M. Chirala, and C. Nguyen, “Multilayer Design Techniques for Extremely Miniaturized CMOS Microwave and Millimeter-Wave Distributed Passive Circuits,’’ IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4218–4224, Dec. 2006. [27]C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004. [28]C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS Active Bandpass Filter Using Compacted Synthetic Quasi-TEM Lines at C-Band,” IEEE Trans. Microwave Theory and Tech., vol. 54, no.12, pp. 4548- 4555, Dec. 2006. [29]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microwave Theory and Tech., vol. 55, no.12, part 1, pp. 2512-2520, Dec. 2007. [30]S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1023-1026. [31]M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “A Ka-band CMOS Wilkinson power divider using synthetic quasi-TEM transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 837- 839, Dec. 2007. [32]B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “New and exact filling algorithms for layout density control,” in Proc. 12th Int. VLSI Design Conf, Jan. 1999, pp. 106–110. [33]H.-H. Wu, H.-S. Wu and C.-K. C. Tzuang, "Synthesized high-impedance CMOS Thin-Film transmission line," in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., Sep. 8-10, 2004, pp. 302-304. [34]H.-S. Wu, H.-J. Yang, C.-J. Peng and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 9, pp. 2713-2720, Sep. 2005. [35]C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “A CMOS miniaturized C-Band active bandpass filter,’’ in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 772-775. [36]T. Itoh, “Generalized spectral domain method for multiconductor printed lines and its applications to tunable suspended microstrips,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 983–987, Dec. 1978. [37]H. Kamitsuna, “A very small, low-loss MMIC rat-race hybrid using elevated coplanar waveguides,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 337– 339, Aug. 1992. [38]W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992. [39]G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. on Components, Packaging, and Manufacturing Technology—part b, vol. 21, no. 2, pp. 171-176, May 1998. [40]F. Schnieder and W. Heinrich, “Model of thin-film microstrip line for circuit design,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 1, pp. 104-110, Jan. 2004. [41]R. E. Collin, Foundations for Microwave Engineering, 2nd Edition, New York: McGraw-Hill, 1992. [42]Y.-C. Chiang and C.-Y. Chen, “Design of lumped element quadrature hybrid,” IEE Electronics Lett., vol. 34, pp. 465–467, Mar. 1998. [43]L.-H. Lu, P. Bhattacharya, L. P. B. Katehi, and G. E. Ponchak, “X-band and K-band lumped Wilkinson power dividers with a micromachined technology,” in IEEE MTT-S Int. Dig., pp. 287–290, 2000. [44]C.Y. Ng, M Chongcheawchamnan, I.D. Robertson, “Lumped-distributed hybrids in 3D-MMIC technology,” IEE Proc.-Microw. Antennas and Propag., vol. 151, no. 4, pp. 370–374, Aug. 2004. [45]L.-H. Lu, Y.-T. Liao and C.-R. Wu, “A Miniaturized Wilkinson power divider with CMOS active inductors,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 11, pp. 775-777, Nov. 2005. [46]K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 9, pp. 3453-3461, Sep. 2006. [47]J.-G. Kim, and G.. M. Rebeiz, “Miniature four-way and two-way 24 GHz Wilkinson power divider in 0.13 μm CMOS,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 9, pp. 658-660, Sep. 2007. [48]T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race couplers for uniplanar MMIC''s,” IEEE Trans. Microwave Theory and Tech., vol. 38, no. 3, pp. 270-275, Mar. 1990. [49]Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,’’ in IEEE Microwave and millimeter-wave monolithic circuits symp., 1992, pp. 79-82. [50]M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002. [51]K. Hettak, G. A. Morin, and M. G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 5, pp. 1624-1635, May 2005. [52]K. Hettak, G. A. Morin, and M. G. Stubbs, “A new miniaturized type of three-dimensional SiGe 90° hybrid coupler at 20 GHz using the meandering TFMS and stripline shunt stub loading,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 33-36. [53]K. Nishikawa, T. Tokumitsu, and I. Toyoda, “Miniaturized Wilkinson power divider using three-dimensional MMIC technology,” IEEE Microwave Guided Wave Lett., vol. 6, no. 10, pp. 372–374, Oct. 1996. [54]M. Ozgur, M. E. Zaghloul, and M. Gaitan, “Micromachined 28-GHz power divider in CMOS technology,” IEEE Microwave and Guided Wave Lett., vol. 10, no. 3, pp. 99–101, Mar. 2000. [55]T. Ji, H. Yoon, J. K. Abraham, V. K. Varadan, “Ku-band antenna array feed with ferroelectric phase shifters on silicon distribution network,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 3, pp. 1131-1138, Mar. 2006. [56]D. M. Pozar, Microwave Engineering, 3rd Edition, J. Wiley & Sons, 2005. [57]L. G. Maloratsky, Passive RF and Microwave Integrated Circuits, Newnes, 2004. [58]Y. Yun, “A novel microstrip-line structure employing a periodically perforated ground metal and its application to highly miniaturized and low-impedance passive components fabricated on GaAs MMIC,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 6, pp. 1951-1959, Jun. 2005. [59]K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q inductors for wireless applications in a complementary silicon bipolar process,” IEEE J. of Solid-State Circuits, vol. 31, no. 1, pp. 4-9, Jan. 1996. [60]J.Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Letters, vol. 14, no. 5, pp. 246−248, May 1993. [61]J. H. Mikkelsen, O. K. Jensen, and T. Larsen, “Crosstalk coupling effects of CMOS co-planar spiral inductors,” in IEEE Proc. Custom Integrated Circuits Conf., 3-6 Oct. 2004, pp. 371-374. [62]L. L. Pun, T. Yeung, J. Lau, F. J. R. Clément, and D. K. Su, “Substrate noise coupling through planar spiral inductor,” IEEE J. Solid-State Circuits, vol. 33, pp. 877–884, Jun. 1998. [63]O. Adan, M. Fukumi, K. Higashi, T. Suyama, M. Miyamoto, and M. Hayashi, “Electromagnetic coupling effects in RFCMOS circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 39–42. [64]C. P. Yue and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998. [65]T. Blalack, Y. Leclercq, and C. P. Yue, “On-chip RF isolation techniques,” Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 2002, pp. 205-211. [66]H.-Y. Tsui and J. Lau, “An on-chip vertical solenoid inductor design for multigigahertz CMOS RFIC,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 6, pp. 1883-1890, Jun. 2005. [67]Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RFIC design,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 699–713, Aug. 2000. [68]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of CMOS spiral inductors for effective broadband shielding,” in 36th EuMC European Microwave Conf., Sep. 2006, pp. 48-51. [69]S. S. Mohan, Maria del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Simple Accurate Expressions for Planar Spiral Inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999. [70]R. K. Mongia, I. J. Bahl, P. Bhartia and J.-S. Hong, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 2007. [71]J. Lange, “Interdigital stripline quadrature hybrid,” IEEE Trans. Microwave Theory and Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969. [72]J. Bahl, “Six-finger Lange coupler on 3 mil GaAs substrate using multilayer MMIC technology,” Microwave Optical Tech. Lett., vol. 30, pp. 322-327, Sep. 2001. [73]M. K. Chirala, and B. A. Floyd, “Millimeter-wave Lange and ring-hybrid in a silicon technology for E-band applications couplers,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 1547–1550. [74]J. P. Shlton, J. Wolfe, and R. V. Wagoner, “Tandem couplers and phase shifters for multi-octave bandwidth,” Microwaves, vol. 4, pp. 14-19, April 1965. [75]S.-W. Moon, M. Han, J.-H. Oh, J.-K. Rhee and S.-D. Kim, “V-band CPW 3-dB tandem coupler using air-bridge structure,” IEEE Microwave and Wireless Comp. Lett., vol. 16, no. 4, pp. 149–151, April 2006. [76]J. S. Izadian, “A new 6-18 GHz,-3 dB multisection hybrid coupler using asymmetric broadside, and edge coupled lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 1989, pp. 243–247. [77]S. Bamba, and H. Ogawa, “Multilayer MMIC directional coupler using thin dielectric layers,” IEEE Trans. Microwave Theory and Tech., vol. 43, No. 6, pp. 1270-1275, Jun. 1995. [78]T. Gokdemir, I. D. Robertson, Q. H. Wang, and A. A. Rezazadeh, “K/Ka-band coplanar waveguide directional coupler using a three-metal-level MMIC process,” IEEE Microwave Guided Wave. Lett., vol. 6, no. 2, pp. 76–78, Feb. 1996. [79]H. Okazaki, and T. Hirota, “Multilayer MMIC broad-side coupler with a symmetric structure,” IEEE Microwave Guided Wave. Lett., vol. 7, no. 6, pp. 145–146, June 1997. [80]N. Marchand, “Transmission line conversion transformers,’’ Electronics, vol. 17, pp. 142–145, Dec. 1944. [81]W. Marczewski, and W. Niemyjski, “The overlapped microstrip for MICs and MMICs,’’ 1984 European Microwave Conf., pp. 166-171, Oct. 1984. [82]Q. Sun, J. Yuan, V. T. Vo and A. A. Rezazadeh, “Design and realization of spiral Marchand balun using CPW multilayer GaAs technology,” in EuMA European Microwave Conf., pp. 68-71, Sep. 2006. [83]J.-X. Liu, C.-Y. Hsu, H.-R. Chuang and C.-Y. Chen, “A 60-GHz millimeter-wave COMS Marchand balun,” in IEEE Radio Frequency Integrated Circuits Symp., 2007, pp. 445–448. [84]R. Schwindt, and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, No. 7, pp. 1429-1434, July 1994. [85]P.-S. Wu, C.-S. Lin, T.-W. Huang, H. Wang, Y.-C. Wang and C.-S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” 2005 European Gallium Arsenide and Other Semiconductor Application Symp., pp. 349–352, 2005. [86]M. C. Tsai, “A new compact balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1993, pp. 141–143. [87]S. A. Maas and K.-W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, No. 12, pp. 2330-2335, Dec.1993. [88]C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, No. 6, pp. 1190-1199, Jun. 2007. [89]P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microwave Theory and Tech., vol. 53, No. 10, pp. 3106-3114, Oct. 2005. [90]S.-C. Tseng, C.-C. Meng, C.-H. Chang and G.-W. Huang “SiGe HBT Gilbert downconverter with an integrated miniaturized Marchand balun for UWB applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 2141–2144. [91]K. S. Ang, and I. D. Robertson, “Analysis and design of impedance- transforming planar Marchand baluns,” IEEE Trans. Microwave Theory and Tech., vol. 49, No. 2, pp. 402-406, Feb. 2001. [92]K. T. Chan, C. Y. Chen, A. Chin, J. C. Hsieh, J. Liu, T. S. Duh, and W. J. Lin, “40-GHz coplanar waveguide bandpass filters on silicon substrate,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 11, pp. 429-431, Nov. 2002. [93]K. T. Chan, A. Chin, M.-F. Li, D.-L. Kwong, S. P. McAlister, D. S. Duh, W. J. Jin, and C. Y. Chang, “High-Performance Microwave Coplanar Bandpass and Bandstop Filters on Si Substrates,” IEEE Trans. Microwave Theory and Tech., vol. 51, no.9, pp. 2036-2040, Sep. 2003. [94]G. Prigent, E. Rius, F. L. Pennec, S. L. Maguer, C. Quendo, G. Six, and H. Happy, “Design of narrow-band DBR planar filters in Si-BCB technology for millimeter-wave applications,” IEEE Trans. Microwave Theory and Tech., vol. 52, No. 3, pp. 1045-1050, Mar. 2004. [95]H.-T. Tso and C.-N. Kuo, “40GHz miniature bandpass filter design in standard CMOS process,” in Topical Meeting on Silicon Monolithic Integrated Circuit in RF Systems., pp. 239-242, Sep. 2004. [96]C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,’’ IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005. [97]S. Sun, J. Shi, L. Zhu, S. C. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-um CMOS technology,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 220-222, Mar. 2007. [98]B. Dehlink, M. Engl, K. Aufinger, and H. Knapp, “Integrated bandpass filter at 77 GHz in SiGe technology,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 5, pp. 346-348, May 2007. [99]W. Mouzannar, H. Ezzedine, L. Billonnet, B. Jarry, and P. Guillon, “Millimeter-wave band-pass filter using active matching principles,” in IEEE Russia Conf. Dig., Novosibirsk, Russia, pp. I.1–I.4, Sep. 1999. [100]M. Ito, K. Maruhashi, S. Kishimoto, and K. Ohata, “60-GHz-abnd coplanar MMIC active filters,” IEEE Trans. Microw. Theory Tech., vol.52, no. 3, pp. 743-750, Mar. 2004. [101]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,’’ IEEE J. Solid-State Circuits, vol.34, no. 5, pp. 717-724, May 1999. [102]D. Hamand and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,’’ IEEE J. Solid-State Circuits, vol.36, no. 6, pp.896-909, Jun. 2001. [103]G. Mattaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks, and coupling structures, Artech House, Norwood, MA, Ch. 8, 1980. [104]Picoprobe Calibration Report [105]D. Li, and Y. Tsividis, “Design techniques for automatically tuned integrated gigahertz-range active LC filters,’’ IEEE J. Solid-State Circuits, vol.37, no. 8, pp.967-977, Aug. 2002. [106]S. A. Maas, Nonlinear microwave and RF circuits, Artech House, Norwood, MA, 2003. [107]“Theory of Intermodulation Distortion Measurement (IMD),” Maury Microwave Application Note 5C-043, 1999. [108]F. Ellinger, Radio frequency integrated circuits and technologies, Springer, 2007. [109]K. T. Christensen, T. H. Lee, and E. Bruun, “A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz,” Analog Integrated Circuits and Signal Processing., vol. 42, no. 1, pp. 55-64, Jan. 2005. [110]B. Georgescu, I. G. Finvers, and F. Ghannouchi, “2 GHz Q-enhanced active filter with low passband distortion and high dynamic range,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2029-2039, Sep. 2006. [111]D. Li and Y. Tsividis, “A 1.9 GHz Si active LC filter with on-chip automatic tuning,” IEEE ISSCC Dig. Tech. Papers, pp. 368-369, Feb. 2001. [112]X. He and W. B. Kuhn, “A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1618-1628, Aug. 2005. [113]T. Soorapanth and S. S. Wong, “A 0-dB IL 2140 ± 30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 579-586, May 2002. [114]K.-W. Fan, Z.-M. Tsai, H. Wang, and S.-K. Jeng, “K-band MMIC active band-pass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 19-21, Jan. 2005. [115]J.-S. Hong and M. J. Lancaster, Microwave Filter for RF/Microwave Applications, New York: Wiiley, 2001. [116]H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique,” IEEE Trans. Microw. Theory Tech., vol.55, no. 9, pp. 1854-1861, Sep. 2007. [117]A. Müller, J. Hasch, and E. Kasper, “Microstrip coupler circuits on micromachined silicon substrates for F-band applications,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 462-465. [118]C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen Raynaud, “Design of 60-GHz millimeter-wave CMOS RFIC-on-Chip bandpass filter,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 672-675. [119]G. Prigent, F. Gianesello, D. Gloria, and C. Raynaud, “Bandpass filter for millimeter-wave applications up to 220 GHz integrated in advanced thin SOI CMOS technology on high resistivity substrate,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 676-679. [120]B. Yang, E. Skafidas, and R. Evans, “Design of integrated millimeter wave microstrip interdigital bandpass filters on CMOS technology,” in 37th EuMC European Microwave Conf., Oct. 2007, pp. 680-683. [121]B. Rejaei, A. Akhnoukh, M. Spirito, and L. Hayden, “Effect of a local ground and probe radiation on the microwave characterization of integrated inductors,” IEEE Trans. Microw. Theory Tech., vol.55, no. 10, pp. 2240-2247, Oct. 2007.
|