跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭宗德
研究生(外文):Chung-Te Peng
論文名稱:應用於微波及毫米波金氧半場效電晶體寬頻壓控振盪器的研製
論文名稱(外文):Design of Microwave and Millimeter-wave Wideband CMOS VCOs
指導教授:黃天偉
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:89
中文關鍵詞:壓控振盪器寬可調頻率切換式耦合電感
外文關鍵詞:VCOwide tuning rangeswitched coupled inductors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,無線通信蓬勃的發展,使得對於整合多種協定和多頻帶的通信系統的收發器的有越來越多的需求。日新月異的無線標準,促使著研究人員去研究能操作在多頻帶的低雜訊與寬頻的壓控振盪器。因此,使用金氧半互補式製程設計一個具有低相位雜訊和寬可調頻率的壓控振盪器是富挑戰性。
本論文的主題在於使用金氧半互補式製程,設計並實現微波及毫米波振盪器,研究的方向著重於使用可切換耦合式電感的LC壓控振盪器。論文主要可分為三大部分,第一部份介紹振盪器的應用並討論LC型振盪器的原理,接著介紹兩個寬頻的壓控振盪器,第一個壓控振盪器使用NMOS交錯耦合式的架構,電感是採用可切換偶合式外接電容到地。然而這顆壓控振盪器只有部分操作成功,另外部分不能操作的主因是低估了開關造成的損失。所以這個壓控振盪器可振盪頻率是由8.42 GHz 到11.24 GHz。另外一個設計在較高頻段的寬頻壓控振盪器是採用互補式交錯耦合式的架構,振盪頻率由31.86 GHz 至 35.26 GHz。相位雜訊是在1 MHz位移下是-89 dBc/Hz。
最後一個部份呈現一個具有88.6%可調頻率的寬頻壓控振盪器。這個振盪器修改在第一顆晶片中失敗之處,準確的估計了整體的損耗。在這個電路使用了一個新的可切換耦合與可用變容器控制的電感。這個壓控振盪器可以由7.82 GHz 連續的振盪至20.27 GHz。在1 MHz位移下的相位雜訊在中心頻率是7.82 GHz時量測到 -106.6 dBc/Hz,在中心頻率是20.27 GHz時量測到 -85.11 dBc/Hz。這個電路的直流偏壓是1.3伏特,主電路電流為6毫安,晶片面積為0.325平方毫米。
In the last few years, the explosive development in wireless communication has resulted in increasing demands for transceivers operating in multi-standard and multi-band communication systems. The emerging wireless standards have pushed researchers to look for low phase noise and wideband VCO capable of operating at several frequency bands. Therefore, to design a wide tuning range VCO with low phase noise is challenging in CMOS technology.
The goal of the thesis is to design and implement wideband VCOs in microwave and millimeter-wave region using CMOS technology. This research focuses on the LC-VCO with switched coupled inductors. The thesis can be divided into three parts. The first part introduces the application of oscillators and discusses the theory of LC-VCO. In the next part, two wideband VCO designs are presented. The first one is a NMOS-only cross-coupled VCO using the switched coupled inductor with terminated capacitor. However, the chip is just a function work due to underestimating the loss of the switches. The VCO only has the oscillation frequency from 8.42 GHz to 11.24 GHz. The other one is also designed for wide tuning range using complementary cross-coupled topology but in high frequency. The VCO operates from 31.86 GHz to 35.26 GHz with phase noise about -89 dBc/Hz at 1 MHz.
At the last part, a wideband VCO with 88.6% tuning range is demonstrated. The VCO modifies the drawback in the first chip with accurately estimating the totally loss. In this circuit, a novel switched coupled and varactor-tuned inductor is used. This VCO demonstrates a continues tuning range from 7.82 GHz to 20.27 GHz. The measured phase noise are -106.6 dBc/Hz when center frequency is 7.82 GHz at 1 MHz offset frequency and -85.11 dBc/Hz when center frequency is 20.27 GHz at 1 MHz offset frequency. The measured Vdd is 1.3 V with a core current 6 mA, and the chip size is 0.325mm2.
誌謝 ………………… i
中文摘要 ………………… iii
Abstract ………………… v
Chapter1 Introduction ………………… 1
1.1 Background and Motivation ………………… 1
1.2 Literature Survey ………………… 2
1.3 Contributions ………………… 4
1.4 Chapter Outline ………………… 5
Chapter 2 Basics of LC-Tank Voltage Controlled Oscillators ………………… 6
2.1 Oscillator Analysis ………………… 7
2.2 Implementation of LC Tank ………………… 12
2.3 Design Parameters of the LC-Tank VCOs ………………… 26
2.4 Architectures of the LC-Tank VCOs ………………… 30
Chapter 3 Wide Tuning Range VCO Using Switched Coupled Inductors ………………… 34
3.1 Analysis of Switched Coupled Inductors ………………… 35
3.2 12.4 GHz VCO With 67% Tuning Range Design ………………… 39
3.2.1 Circuit Design ………………… 39
3.2.3 Simulation Results and Layout ………………… 43
3.2.3 Measurement Results ………………… 46
3.3 A 31.86 GHz to 35.26 GHz Voltage Controlled Oscillator ………………… 49
3.2.1 Circuit Design ………………… 49
3.2.3 Simulation Results and Layout ………………… 53
3.2.3 Measurement Results ………………… 56

Chapter 4 An Ultra Wide Tuning Range LC-VCO With Switched Coupled and Varactor-Tuned Inductors ………………… 62
4.1 Circuit Design ………………… 63
4.2 Modification Design ………………… 67
4.3 Simulation Results ………………… 69
4.3.1 Simulation of Inductors ………………… 69
4.3.2 Simulation of Tuning Range ………………… 72
4.3.3 Simulation of Phase Noise ………………… 75
4.3.4 Layout ………………… 76
4.4 Measurement Results ………………… 77
Chapter 5 Conclusions ………………… 85
Reference ………………… 87
[1]A. D. Berny, A. M. Niknejad, R. G. Meyer, “A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration”, IEEE J. Solid-State Circuits, vol. 40, pp. 909-917, Apr. 2005.

[2]N. H. W. Fong, J.-O. Plouchart, N. Zamndmer, D. Liu, L. F.Wagner, C. Plett, N. G. Tarr, “Design of Wide-band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J.Solid-State Circuits , vol. 38, pp. 1333-1342, Aug. 2003.
[3]L. Geynet, E. De Foucauld, P. Vincent, G. Jacquemod, “Fully-Integrated Multi-Standard VCOs with switched LC tank and Power Controlled by Body Voltage in 130nm CMOS/SOI,” IEEE Radio-Frequency Integrated Circuits Symp., Jun. 2006.
[4]N. Tzartzanis and W. W. Walker, “A reversible poly-phase distributed VCO,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 2452–2453.
[5]Murat Demirkan, Stephen P. Bruss and Richard R. Spencer, “11.8 GHz CMOS VCO With 62% Tuning Range Using Switched Coupled Inductors,” IEEE Radio-Frequency Integrated Circuits Symp., pp. 401-404, Jun. 2007.
[6]KaChun Kwok, and John R. Long, “A 23-to-29 GHz Transconductor-Tuned VCO MMIC in 0.13 CMOS,” IEEE J. Solid-State Circuits, vol.42, NO.12, pp. 2878-2886, Dec. 2007.
[7]Jun-Chau Chien and Liang-Hung Lu, “A 40-GHz Wide-Tuning-Range VCO in 0.18-μm CMOS,” IEEE on VLSI 2006.
[8] B. Razavi, Design of Integrated Circuits for Optical Communication,
McGrawHill, Inc. 2003.
[9]B. Razavi, RF Microelectronics, PRENTICE HALL, 1998.
[10]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw, Inc. 2001
[11]M. A. Do, R. Zhao, K. S. Yeo, J. G. Ma,”Fully integrated 10 GHz CMOS VCO,”Electrics Letters, Vol. 37 no. 16, pp. 1021 – 1023, 2 Aug, 2001.
[12]C. R. C. De Ranter, M. S. J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,“ IEEE ISSCC Dig. Tech. Papers, pp. 370-37, 2001.
[13]F. X. Sinnesbichler, H. geltinger, G. R. Olbrich, “A 50 GHz SiGe HBT push-push oscillator, “ IEEE IMS Dig. vol. 1, pp. 9-12, 1999.
[14] N. M. Nguyen and R. G. Meyer, “Start-up and Frequency Stability in High-Frequency Oscillators, “IEEE JSSC, vol. 27, pp. 810-820, May 1992.
[15]G. Gonzalez, “Microwave Transistor Amplifier,“ 2nd edition, Prentice Hall, Upper Saddle River, New Jersey 07458, 1997.
[16]D. M. Pozar, “Microwave Engineering, “2nd edition, John Wiley & Sons, Aug. 1997.
[17] P. Arcioni, R. Castello, L. Perregrini, and E. Sacchi, “An Improved Lumped-Element Equivalent Circuit for on Silicon Inntegrated Inductors,” in IEEE RAWCON., pp. 301-304, 1998.
[18]M. Danesh, and J. R. Long, “Differentially driven symmetric microstrip inductors,” IEEE trans. Microwave Theroy Tech., vol. 50, pp 332-341, Jan. 2002.
[19]Ching-Yuan Yang, “Design of Clock Synchronizer and Frequency Synthesizes,” Doctor of philosophy Thesis, National Taiwan University, 2000.
[20]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
[21]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 1728-1736, Dec. 2002.
[22]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[23]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC-oscillators,” in Proc. IEEE Custom Integrated Circuits Conf.(CICC), Orlando, FL, pp. 569–572, May 2000.
[24]Dan Shi, Jack East and Michael P. Flynn, “A Compact 5GHz Standing-Wave Resonator-based VCO in 0.13μm CMOS,” IEEE Radio-Frequency Integrated Circuits Symp., pp. 591-594, Jun. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top