跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱明家
研究生(外文):Ming-Chia Chiou
論文名稱:多輸入多輸出正交分頻多工系統之量測與通道估測
論文名稱(外文):Measurements and Channel Estimation for Wireless MIMO-OFDM System
指導教授:李學智李學智引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:105
中文關鍵詞:正交分頻多工多輸入多輸出最小平方法基於離散傅利葉法保護頻帶虛子載波均方誤差
外文關鍵詞:OFDMMIMOleast square methodDFT-based methodguard bandvirtual subcarriermean square error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,正交分頻多工系統已成為熱門及廣為使用的無線通訊系統之一。無線區域網路就是一個最典型的例子,它不但在我們的生活中隨處可見並已經成為現今生活不可缺少的一塊。隨著使用者對於影音、線上遊戲及數據通訊的需求增加,新的區域網路規格(IEEE 802.11n)因此發展出來,它修改了傳統的無線網路系統(IEEE 802.11a/g)並結合多傳送天線和多接收天線技術。不同於傳統的系統,多輸入多輸出正交分頻多工系統增加了空間的維度,因此接收端在同步方式及通道估測變得更為重要。在本論文中,我們首先會針對單天線系統的同步及通道估測做個介紹,接著介紹延伸至多天線系統的方法。

正交分頻多工系統可將寬頻通道化分成較小的窄頻通道,因此可以有效地對抗多重路徑所引起的干擾效應。因此,接收端可利用此特性配合快速傅立葉演算法使用低複雜度的一階等化器來對通道做補償。在通道估計上,一般常見的最小平方法可以藉由基於離散傅利葉法來降低雜訊的干擾量。但是實際的系統存在著一些不使用的子載波,通常這些子載波被稱為保護頻帶或虛子載波。由於這些虛子載波的影響,我們不能直接使用基於離散傅利葉法,否則會造成時域上通道響應洩漏。為了解決這問題,本論文提出一個新的通道估測方法藉由重建虛子載波上的通道響應並結合基於離散傅利葉法,使用此方法可以改善原本虛子載波所造成的效應,並透過模擬的結果可以看到通道估測的均方誤差可以逼近基於離散傅利葉法的均方誤差下界。

另一方面,針對於正交分頻多工系統,我們使用實驗室現有的儀器設備來建立一套量測系統。本篇論文中,我們分別會詳細介紹整個實驗的架構,包括傳送端及接收端的儀器特性及設定。不同於電腦上的模擬,我們利用通道產生器來模擬實際環境通道,並使用任意波形產生器將訊號經由傳輸線傳送至即時頻譜分析儀,再將量測結果加以分析及討論。此外,我們也針對實驗室的實際環境進行量測及數據分析。最後,我們所建立的量測系統可以作為多輸入多輸出正交分頻多工系統量測研究的基礎,並且可以透過這套量測系統進一步驗證所發展的演算法。
Recently, OFDM systems have gained its popularity and become widely used wireless communication systems. The WLAN system is the application which appears everywhere and becomes the part of our life. With the increasing demand of video, audio, and data communication, the new standard IEEE 802.11n is developed to obtain higher data rate and increase range performance. It amends the conventional WLAN systems (IEEE 802.11a/g) and involves the MIMO technique. Compared with the SISO-OFDM system, the synchronization and the channel estimation are more crucial for MIMO-OFDM system due to the additional spatial dimension. In this thesis, we introduce some basic conventional methods used for the synchronization and the channel estimation in SISO-OFDM system and discuss the extended methods in the MIMO-OFDM system.

The OFDM system converts the wideband channel to a set of parallel narrowband subchannels. As a result, it is robust against the multipath frequency selective channel. Besides, the one-tap frequency domain equalizer implemented by fast Fourier transform can be applied at the receiver end. To improve the channel estimation, the DFT-based method is used to reduce the noise influence. In practical DFT-based OFDM systems, however, a number of sub-carriers are left unmodulated, these are referred as virtual subcarriers. The leakage phenomenon induced by the virtual subcarriers limits the performance of the DFT-based channel estimation method. To solve the problem, we propose a novel channel estimation method which recovers the channel frequency response at the virtual subcarriers. The approach is slightly suffered from the noise enhancement. The simulation results show that the mean square error is close to the lower bound of the DFT-based method.

On the other hand, we establish a measurement system for MIMO-OFDM system. The setup and configuration of the transmitter (vector signal generator) and the receiver (real-time spectrum analyzer) are described in detail. Unlike the computer simulation, we use the channel emulator to emulate the practical indoor channel and take the measurement in real-time environment. This measurement system could be the basic study of the MIMO-OFDM measurement systems and used to verify an algorithm designed for the OFDM systems.
Abstract I
Contents III
List of Figures V
List of Tables VII

Chapter 1 Introduction 1
1.1 Motivation............................................................................................................1
1.2 Thesis Overview..................................................................................................3

Chapter 2 System Description 5
2.1 OFDM Modulation..............................................................................................6
2.2 High Throughput (HT) PHY specification...........................................................8
2.2.1 PPDU formats......................................................................................8
2.2.2 Scrambler............................................................................................13
2.2.3 Convolutional Coding..........................................................................14
2.2.4 Data Interleave.....................................................................................15
2.2.5 Constellation Mapping.........................................................................16 2.2.5 Space Time Block Coding (STBC)......................................................................18
2.2.6 Pilot Subcarriers...................................................................................18
2.2.7 Windowing function............................................................................20
2.2.8 Spatial Mapping...................................................................................20
2.2.9 Transmitter Block Diagram..................................................................22
2.3 Overview of Indoor Spatial Channel Models.......................................................23
2.3.1 Saleh-Valenzuela Model with AOA/AOD...........................................25
2.3.2 HiperLan/2 Channel Models.................................................................28
2.3.3 TGn Channel Models...........................................................................30

Chapter 3 Synchronization and Channel estimation 37
3.1 Synchronization.............................................................................................37
3.1.1 Packet Detection....................................................................................37
3.1.2 Carrier Frequency Offset.......................................................................42
3.1.3 Symbol Timing Offset..........................................................................45
3.2 Channel Estimation ..............................................................................................48
3.3 MIMO Extensions of Synchronization Methods..................................................55
3.4 MIMO Extensions of Channel Estimation Methods.............................................58
3.4 Space Time Block Code........................................................................................62
3.6 Simulation Results................................................................................................64
3.6.1 Performance of OFDM System in HyperLan/2 Channel Model A......................64
3.6.2 Performance of OFDM System in TGn Channel Model D..................................66

Chapter 4 The Indoor Real-Time Measurement Systems 69
4.1 Experiment Description........................................................................................69
4.1.1 Transmitter Setup..........................................................................................69
4.1.2 Receiver Setup..............................................................................................73
4.1.3 Measurement System Configuration............................................................75
4.1.3 Measurement Environment..........................................................................76
4.2 Measurement Data Analysis......................................................................... .......77
4.3 Performance of the Measured Signal....................................................................81
4.3.1 HyperLan/2 Channel Model A of Channel Emulator............................................82
4.3.2 Real Environment..................................................................................................84


Chapter 5 Conclusions 91

References 93
[1] R. Van Nee and R. Parasad, “OFDM for wireless multimedia communication”, Artech House, Boston, 2000

[2] IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band.

[3] IEEE Standard 802.11g-2003, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band.

[4] IEEE P802.11n™/D3.00, September 2007.

[5] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, pp. 100–109, Feb. 1995.

[6] U. Reimers, “Digital video broadcasting,” IEEE Commun. Mag., vol. 36, pp. 104–110, June 1998.

[7] Local and Metropolitan Area Networks—Part 16, Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a.

[8] A. Paulraj, R. Nabar, and D. Gore, “Introduction to Space–Time Wireless Communications,” Cambridge, U.K.: Cambridge Univ. Press, 2003.

[9] R&S®SMU200A, Vector Signal Generator Operating Manual, 31.10.2007 http://www2.rohde-schwarz.com/file/Manual_smu.pdf

[10] Tekronix RSA6114A, Real Time Spectrum Analyzer Operating Manual, http://www.tek.com/

[11] H. Ekström et al., “Technical Solutions for the 3G Long-term Evolution”, IEEE Communications Magazine, March 2006.

[12] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, 1996.

[13] Saleh A. A. M., and Valenzuela R. A., “A Statistical Model for Indoor Multipath Propagation,” IEEE Journal on Selected Areas in Communication, Vol. JSAC-5, No.2, pp. 128-137, February. 1987.

[14] J. Medbo and P. Schramm, “Channel models for HIPERLAN/2,” ETSI/BRAN document no. 3ERI085B.

[15] J. Medbo and J-E. Berg, “Measured radiowave propagation characteristics at 5 GHz for typical HIPERLAN/2 scenarios,” ETSI/BRAN document no. 3ERI084A.

[16] Erceg V. et al., IEEE 802.11 document 03/940r4 “TGn Channel Models”, May 10 2004

[17] Q.H. Spencer, et al., “Modeling the statistical time and angle of arrival characteristics of an indoor environment,” IEEE J. Select. Areas Commun., vol. 18, no. 3, March 2000, pp. 347-360.

[18] R.J-M. Cramer, R.A. Scholtz, and M.Z. Win, “Evaluation of an ultra-wide-band propagation channel,” IEEE Trans. Antennas Propagat., vol. 50, no.5, May 2002, pp. 561-570.
[19] A.S.Y. Poon and M. Ho, “Indoor multiple-antenna channel characterization from 2 to 8 GHz,” submitted to ICC 2003 Conference.

[20] J.P. Kermoal, L. Schumacher, P.E. Mogensen and K.I. Pedersen, “Experimental investigation of correlation properties of MIMO radio channels for indoor picocell scenario”, in proc. Signal systems and Computers 35th Asilomar Conf., vol. 2, 2001.

[21] H.-G. Ryu , Y. Li and J.-S. Park “An improved ICI reduction method in OFDM communication system,” IEEE Trans. Broadcast., vol. 51, pp. 395, Sep. 2005.

[22] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM”, IEEE Transactions on Communication, Vol. 45, No. 12, December 1997.

[23] M. Speth, F. Classen and H. Meyr, “Frame synchronization of OFDM systems in frequency selective fading channel”, in Proc. IEEE Vehicular Technology

[24] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications. Wiley, September 2007

[25] Jan-Jaap van de Beek, Ove Edfors, Magnus Sandell, Sarah Kate Wilson, and Per Ola BÄorjesson. On channel esimation in OFDM systems. In Proc. VTC''95, volume 2, pages 715

[26] O. Edfors, M. Sandell, J.J. van de Beek, S.K. Wilson, and P.O. Börjesson, “Analysis of DFT-Based Channel Estimators for OFDM”, Wireless Personal Communications, Kluwer Academic Publishers, in press.

[27] Kan Zheng, Jian Su, and Wenbo Wang, “DFT-Based Channel Estimation in Comb-Type Pilot-Aided OFDM Systems with Virtual Carriers”, Personal, Indoor and Mobile Radio Communications, Sept. 2007
[28] Rogen A. Horn and Charles R. Johnson, “Matrix Analysis”, Cambridge University Press 1985

[29] Seongwook Song and Adrew C. Singer, “Pilot-Aided OFDM Channel Estimation in the Presence of the Guard Band”, IEEE Transactions on Communication, Vol. 55, No. 8, AUGUST 2007.

[30] S. Alamouti, “A simple transmit diversity technique for wireless comminications,” IEEE J. Select. Areas Commun., vol. 16, pp.1451–1458, Oct. 1998

[31] R. van Nee et al., “The 802.11n MIMO-OFDM standard for wireless LAN and beyond,” Springer Wireless Pers. Comms.,vol. 37, pp. 445–453, May 2006

[32] J. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Equalizer Training Algorithms for Multicarrier Modulation Systems”, Proc. IEEE Int’l. Conf. Commun., vol. 2, Geneva, Switzerland, May 1993, pp. 761-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊