跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊善詠
研究生(外文):Shan-Yung Yang
論文名稱:時域磁振造影術
論文名稱(外文):Time-Domain Magnetic Resonance Imaging
指導教授:江簡富江簡富引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:37
中文關鍵詞:磁振造影術梯度磁場時域解析法雜訊抑制
外文關鍵詞:Magnetic resonance imaging (MRI)gradient fieldtime domainnoise reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在本篇論文中,我們提出了一個全新的「時域磁振造影術」架構。相較於現行之「頻域磁振造影」,該架構簡化了梯度磁場的複雜度(只需一個梯度磁場),並大幅減少成像所需時間。
  「時域」與「頻域」磁振造影術的主要差異在於處理磁振信號上的不同,我們利用電腦模擬來比較兩種架構間的優缺點。
A time-domain magnetic resonance imaging (MRI) technique is proposed to reconstruct the image of sample slice with one set of gradient coils only. Working principles are thoroughly analyzed and compared with conventional Fourier-based techniques to explore their pros and cons. Simulations are conducted to assess the plausibility of this technique for practical use.
論文口試委員審定書 iii
Acknowledgment iv
摘要 v
關鍵字 v
Abstract vi
Keywords vi
List of Figures vii
List of Tables viii
1 Introduction 1
2 MRI Parameters 8
3 Theory of Time-Domain MRI 11
4 Solution to Bloch Equation 18
5 Simulations and Discussions 24
5.1 Noise Effect 24
5.2 Practical Factors 26
5.3 Demonstration 27
6 Conclusions 32
Reference 33
[1] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, “A new method of measuring
nuclear magnetic moment,” Phys. Rev., vol. 53, p. 318, 1938.
[2] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460-474, 1946.
[3] http://en.wikipedia.org/wiki/NMR
[4] E. L. Hahn, “Nuclear induction due to free Larmor precession,” Phys. Rev., vol. 77, pp.
297-298, 1950.
[5] E. L. Hahn, “Spin echoes,” Phys. Rev., vol. 80, pp. 580-594, 1950.
[6] H. Y. Carr, “Steady-state free precession in nuclear magnetic resonance,” Phys. Rev.,
vol. 112, pp. 1693-1701, 1958.
[7] E. D. Becker, J. A. Feretti, and T. C. Farrar, “Driven equilibrium Fourier transform
spectroscopy: A new method for nuclear magnetic resonance signal enhancement,” Phys.
Rev., vol. 91, pp. 7784-7785, 1969.
[8] P. C. Lauterbur, “Image formation by induced local interactions: Examples of employing
nuclear magnetic resonance,” Nature, vol. 242, pp. 190-191, 1973.
[9] P. Mansfield, “Multi-planar image formation using NMR spin-echos.” J. Phys. C, vol.
10, pp. L55-L58, 1977.
[10] http://en.wikipedia.org/wiki/Magnetic resonance imaging
[11] W. S. Hinshaw, “Spin mapping: The application of moving gradients to NMR,” Phys.
Lett. A, vol. 48, pp. 87-88, 1974.
[12] W. S. Hinshaw, “Image formation by nuclear magnetic resonance: The sensitive-point
method,” J. Appl. Phys., vol. 47, pp. 3709-3721, 1976.
[13] E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore and C.
Simaroj, “NMR images by the multiple sensitive point method: Application to larger
biological systems,” Phys. Med. Biol., vol. 22, pp. 971-974, 1977.
[14] P. Mansfield, A. A. Maudsley, and T. Bains, “Fast scan proton density imaging by
NMR,” J. Phys. E, vol. 9, pp. 271-278, 1976.
[15] P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine, Academic press, p. 93,
1982.
[16] J. R. Mallard, “Magnetic resonance imaging - The Aberdeen perspective on developments
in the early years,” Phys. Med. Biol., vol. 51, pp. R45-R60, 2006.
[17] http://www.cis.rit.edu/htbooks/mri/
[18] S. Ljunggren, “A simple graphical representation of Fourier-based imaging methods,”
J. Magn. Reson., vol. 54, pp. 338-343, 1983.
[19] D. B. Twieg, “The k-trajectory formulation of the NMR imaging process with applications
in analysis and synthesis of imaging methods,” Med. Phys., vol. 10, pp. 610-621,
1983.
[20] H. J. Weinmann, R. C. Brasch, W. R. Press and G. E. Wesbey, “Characteristics of
gadolinium-DTPA complex: A potential NMR contrast agent,” Am. J. Roentgenol, vol.
142, pp. 619-624, 1984.
[21] M. Laniado, H. J. Weinmann, W. Sch‥orner, R. Felix, and U. Speck, “First use of Gd-
DTPA/dimeglumine in man,” Physiol. Chem. Phys. Med. NMR, vol. 16, pp. 157-165,
1984.
[22] G. A. Johnson, M. B. Thompson, S. L. Gewalt, and C. E. Hayes, “Nuclear magnetic
resonance imaging at microscopic resolution,” J. Magn. Reson., vol. 68, pp. 129-137,
1986.
[23] C. D. Eccles and P. T. Callaghan, “High resolution imaging - the NMR microscope,” J.
Magn. Reson., vol. 68, pp. 393-398, 1986.
[24] J. B. Aguayo, S. J. Blackband, J. Schoeniger, M. Mattingly, and M. Hintermann, “Nuclear
magnetic resonance imaging of a single cell,” Nature, vol. 322, pp. 190-191, 1986.
[25] S. J. Blackband, D. L. Buckley, J. D. Bui, and M. I. Phillips, “NMR microscopy -
beginnings and new directions,” Magn. Reson. Mater. Phy., vol. 9, pp. 112-116, 1999.
[26] B. Chapman, R. Turner, R. J. Ordidge, M. Doyle, M. Cawley, R. Coxon, P. Glover, and
P. Mansfield, “Real-time movie imaging from a single cardiac cycle by NMR,” Magn.
Reson. Med., vol. 5, pp. 246-254, 1987.
[27] C. L. Dumoulin, S. P. Souza, and H. R. Hart, “Rapid scan magnetic resonance angiography,”
Magn. Reson. Med., vol. 5, pp. 238-245, 1987.
[28] J. Stepiˇsnik, V. Erˇzen, and M. Kos, “NMR imaging in the earth’s magnetic field,”
Magnet. Reson. Med., vol. 15, pp. 386-391, 1990.
[29] V. Courtillot and J. L. L. Mou‥el, “Time variations of the earth’s magnetic field: From
daily to secular,” Ann. Rev. Earth Pl. Sc., vol. 16, pp. 389-476, 1988.
[30] P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic
resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion
under Antarctic conditions,” Rev. Sci. Instrum., vol. 68, pp. 4263-4270, 1997.
[31] A. Mohoriˇc, G. Planinˇsiˇc, M. Kos, A. Duh, and J. Stepiˇsnik, “Magnetic resonance
imaging system based on earth’s magnetic field,” Instrum. Sci. Tech., vol. 32, issue 6,
pp. 655-667, 2004.
[32] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P.
Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. M. Cheng, T.
J. Brady, and B. R. Rosen., “Dynamic magnetic resonance imaging of human brain
activity during primary sensory stimulation,” Proc. Natl. Acad. Sci., vol. 89, pp. 5675,
1992.
[33] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, “Time course
EPI of human brain function during task activation,” Magn. Reson. Med., vol. 25, pp.
390-397, 1992.
[34] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer Jr., and A.
Wishnia, “Biological magnetic resonance imaging using laser-polarized 129Xe,” Nature,
vol. 370, pp. 199-201, 1994.
[35] J. M. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging, CRC
press, 1998.
[36] P. Reimer, P. M. Parizel, and F.-A. Stichnoth, Clinical MR Imaging, 2nd ed., Springer,
2003.
[37] M. A. Brown and R. C. Semelka, MRI Basic Principles and Applications, 3rd ed., John
Wiley, 2003.
[38] B. J. Pichler, M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S.
B. Siegel, C. D. Claussen, and S. R. Cherry, “Performance test of an LSO-APD detector
in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med., vol. 47, pp. 639-647,
2006.
[39] Z.-P. Liang and P. C. Lauterbur, Principle of Magnetic Resonance Imaging, IEEE press,
1999.
[40] J. C. Hoch and A. S. Stern, NMR Data Processing, Wiley-Liss, 1996.
[41] J. Mispelter, M. Lupu, and A. Bri﹐cuet, NMR Probeheads For Biophysical and Biomedical
Experiments, Imperial College Press, 2006.
[42] T. W. Redpath, “Commentary: Signal-to-noise ratio in MRI,” British J. Radiology, vol.
71, pp. 704-707, 1998.
[43] D. I. Hoult and P. C. Lauterbur, “The sensitivity of the zeugmatographic experiment
involving human samples,” J. Magn. Reaon., vol. 34, pp. 425-433, 1979.
[44] C. L. Partain, R. R. Price, J. A. Patton, M. V. Kulkarni, and A. E. James, Jr., Magnetic
Resonance Imaging, Physical Principles and Instrumentation, 2nd ed., vol. 2, W. B.
Saunders Company, 1988.
[45] J. D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, 1975.
[46] G. J. Barker and S. C. R. Williams, “Improving resolution in MRI by interleaving data
acquisition for increased digitisation rates,” IEE Colloq. Tech. Develop. Clinical NMR
in UK, vol. 47, pp. 2/1-2/2, 1991.
[47] D. D. L. Chung, “Materials for electromagnetic interference shielding,” J. Mater. Eng.
Perform., vol. 9, pp. 350-354, 2000.
[48] A. Lacaze, Y. Laumond, J. P. Tavergnier, A. Fevrier, T. Verhaege, B. Dalle, and A.
Ansart, “Coils performances of superconducting cables for 50/60 Hz applications,” IEEE
Trans. Magn., vol. 27, pp. 2178-2181, 1991.
[49] J. H. Bae, K. D. Sim, R. K., Y. K. Kwon, K. S. Ryu, and Y. S. Jo, “The fabrication of
superconducting magnet for MRI,” Phys. C, vol. 372-376, part 3, pp. 1342-1345, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top