跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾暐哲
研究生(外文):Wei-Je Tseng
論文名稱:應用於微波頻段之低雜訊放大器及相移器之研究
論文名稱(外文):Investigation of Low Noise Amplifier and Phase Shifter for Microwave Applications
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:123
中文關鍵詞:低溫低雜訊放大器相移器
外文關鍵詞:Cryogenic low noise amplifierphase shifter
相關次數:
  • 被引用被引用:6
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中開發了一個變質高電子移動率電晶體(mHEMT)的低雜訊放大器(LNA),以及三個互補金氧半導體(CMOS)的相移器,分別用於天文接收機與相位陣列系統。
在ALMA(Atacama 大型毫米波及次毫米波陣列)天文接收機的低溫彈夾中,4-12 GHz的低雜訊放大器是一個重要的基礎元件,原因在於低雜訊放大器的等效雜訊溫度會影響接收訊號的敏感度進而主宰接收機的性能。為達到嚴峻的低雜訊要求以及低製作成本的考量,我們採用高參雜銦(indium)通道的mHEMT來實現此低雜訊放大器。此低雜訊放大器晶片的量測結果,在室溫下有29±1 dB的功率增益及1.9 dB的最小雜訊因素,在直流功率消耗為160 mW情況下。封裝後將直流功率消耗降至 20 mW,在室溫下仍可有25±2 dB的功率增益及1.9 dB的最小雜訊因素。當溫度降至22.4 K,量測結果顯示此放大器有25±2 dB的功率增益及15.1 K的最小等效雜訊溫度。
CMOS相位陣列系統於現代通訊系統是未來的趨勢,原因在於CMOS可整合RF前端與基頻元件而減少製程上的成本,而相位陣列系統的空間多樣性與高陣列增益可增加系統的頻譜效率。然而,要建構此種系統相移器的性能則為首要考量。於此篇論文中,將介紹三種不同架構的CMOS相移器。
首先,要呈現的是一個微小化三位元切換式相移器。藉由縮減電感的大小,晶片面積可減少至0.285 mm2。此電路實現在0.18-μm CMOS製程上。此電路於21-29 GHz展示了小於5.3° 的均方根(RMS)相位誤差以及小於1.3 dB 的均方根(RMS)增益誤差。於24 GHz,平均的插入損耗與反射損耗分別為11 dB與7 dB。
接著,一個基於注入鎖定振盪器的相移器設計與製造於0.18-μm CMOS製程上,且晶片面積為0.22 mm2且直流消耗為14 mW。低品質因素設計的LC槽以及寬調整範圍設計的振盪器,當輸入功率為-3 dBm時可延展注入鎖定範圍至38%,同時也可降低注入源的相位雜訊在可調相位範圍內的衰減。這些特性可提高基於注入鎖定振盪器的相移器,於相位陣列系統中的可行性與可靠度。
最後,一個新的向量加法相移器架構設計與製造於0.13-μm CMOS製程上。藉由降低供給偏壓與減少放大器的數量,直流消耗可減少至20 mW。較少的聯結器與平衡轉換器可減少面積至0.45 mm2。此電路於17-24 GHz展示了1.5-10° 的均方根(RMS)相位誤差以及1.2-1.6 dB 的均方根(RMS)增益誤差。
In this dissertation, a mHEMT low noise amplifier (LNA) and three CMOS phase shifters are developed for radio astronomy receiver and phased-array system, respectively.
A 4-12 GHz LNA is an important building block at cold cartridge of ALMA (Atacama Large Millimeter/Sub-millimeter Array) radio astronomy receiver. Since the equivalent noise temperature of LNA affects the sensitivity of the received signal and dominates the performance of the receiver. In order to achieve the stringent noise requirement, the metamorphic HEMT technology employed to realize the LNA. It takes the advantages of low cost GaAs process and highly doped indium channel to achieve low noise performance. The on-chip measurements at room temperature with 160 mW dc consumption for LNA give a power gain of 29±1 dB and a minimum noise figure of 1.9 dB. After packaging, at room temperature the LNA with 20 mW dc consumption gives a power gain of 25±2 dB and a minimum noise figure of 1.9 dB. When cooled down to 22.4 K the LNA with 20 mW dc consumption shows a power gain of 25±2 dB and a minimum equivalent noise temperature of 15.1 K.
CMOS phased-array system is a future trend in modern communication system, since the CMOS technology reduce the fabrication cost by integrating both the RF front-end and baseband circuit in a single chip, and the special diversity and high array gain of phased-array system can increase the spectral efficiency of the system. However, to establish such system the performance of the phase shifter must be considered primarily. In this thesis, three different topologies of CMOS phase shifters will be introduced.
First of all, a miniature 3-bit switching phase shifter is presented. By shrinking the size of inductors, the size can be reduced to 0.285 mm2. The circuit is implemented with 0.18-μm CMOS technology. The circuit demonstrates RMS phase error less than 5.3° and RMS gain error less than 1.3 dB from 21-29 GHz. The average insertion loss and return loss at 24 GHz are 11 and 7 dB, respectively.
Further, a phase shifter based on the injection locked oscillator is designed and fabricated in a 0.18-μm CMOS technology, which has only 0.22 mm2 chip area and 14-mW power dissipation. Low quality factor design of the LC tank and wide tuning range design of free-running oscillator can extend the locking range up to 38% with -3 dBm input power and also reduces phase noise degradation of the locked oscillator in the phase tuning range. These features can enhance the feasibility and reliability of the injection locked oscillator based phase shifter in phased-array system.
Finally, a new architecture of vector sum phase shifter is designed and fabricated in a 0.13-μm CMOS technology. By lowering down supply voltage and reducing the number of amplifiers, the power dissipation can be reduced to 20 mW. Fewer passive components such as couplers and baluns can shrink the chip size to 0.45 mm2. The measured results demonstrate RMS phase errors of 1.5-10° and RMS gain errors of 1.2-1.6 dB from 17-24 GHz.
口試委員會審定書...#
誌謝...i
中文摘要...iii
ABSTRACT...v
CONTENTS...vii
LIST OF FIGURES...x
LIST OF TABLES...xvi
Chapter 1 Introduction...1
1.1 Background and Motivation...1
1.2 Literature Survey...2
1.3 Contributions...4
1.4 Organization of the Thesis...5
Chapter 2 A mHEMT Low Noise Amplifier for ALMA Radio Astronomy Receiver...7
2.1 Introduction...7
2.2 Circuit Design Considerations...9
2.2.1 Broadband Matching Network...9
2.2.2 Device Stability...10
2.2.3 Noise Figure...12
2.3 Circuit Design...12
2.4 Simulations and On-Chip Measurement...15
2.5 Cryogenic Temperature Measurement...18
2.5.1 Packaged Amplifier and Room Temperature Measurement...18
2.5.2 Cryogenic Measurement Setup and S-parameters Measurement...21
2.5.3 Noise Temperature Measurement in Cryogenic Temperature...24
2.6 Discussion and Summary...28
Chapter 3 Phase Shifter Overview...31
3.1 Introduction...31
3.2 Performance Parameters of Phase Shifter...32
3.2.1 Absolute and Relative Phase Shift...32
3.2.2 RMS Phase and Amplitude Errors...33
3.3 Classification of Phase Shifters...36
3.3.1 Fixed State Phase Shifters...36
3.3.2 Adjustable state Phase Shifters...40
Chapter 4 A Miniature 3-Bit Switching Phase Shifter...45
4.1 Introduction...45
4.2 Principle of Switching Phase Shifter...45
4.2.1 90° and 180° Phase Shifter 45
4.2.2 45° Phase Shifter...48
4.3 Design Considerations...50
4.3.1 Implementation of Inductor...50
4.3.2 Size Reduction of 90° Phase Shifter...51
4.3.3 Size Reduction of 180° Phase Shifter...53
4.3.4 Size Reduction of 45° Phase Shifter...54
4.3.5 Size Selection of Switches...55
4.4 Simulated Results...56
4.5 Measured Results...61
4.6 Discussion and Summary...65
Chapter 5 Continuous Tunable Phase Shifter Based on Injection Locked Oscillator ...68
5.1 Introduction...68
5.2 Phase Shift Phenomenon of Injection Locked Oscillator...69
5.3 Circuit Design and Simulations...73
5.4 Experiment Results...81
5.5 Discussion and Summary....90
Chapter 6 K-band Tunable Vector Sum Phase Shifter...93
6.1 Introduction...93
6.2 Operation Principle...94
6.3 Circuit Design and Simulations...97
6.4 Experiment Results...106
6.5 Discussion and Summary...110
Chapter 7 Conclusion...115
REFERENCE ...117
[1]http://alma.asiaa.sinica.edu.tw/GI/GI.html
[2]M. Chertouk, W. D. Chang, C. G. Yuan, H. H. Chen, D. W. Tu, J. Liu, N. Draidia, and P. C. Chao, “The first 0.15-μm MHEMT 6’ GaAs foundry service: highly reliable process for 3V drain bias operations,” in International Conference on Compound Semiconductor Manufacturing Technology, 2003.
[3]W. E. Hoke, C. S. Whelan, P. F. Marsh, P.J. Lemonias, P. S. Lyman, S. M. Lardizabal, R. E. Leoni, T. E. Kazior, and A. Torabi, “Progress in GaAs-based metamorpic technology,” in International GaAs Manufacturing Technology Conference, 2001.
[4]S. Delcourt, G. Dambrine, N. Eddine Bourzgui, S. Lepilliet, C. Laporte, D. Smith, and J.-P. Fraysse, “Noise and dynamic cryogenic performance of metamorphic transistors from 20 to 42 GHz,” in European Microwave Integrated Circuits Conference, Sept. 2006, pp. 9-12.
[5]M. Kelly, I. Angelov, J. P. Starski, N. Wadefalk, and H. Zirath, “4-8 GHz low noise amplifiers using metamorphic HEMT technology,” in European Microwave Integrated Circuits Conference, Sept. 2006, pp. 118-121.
[6]E. F. Lauria, A.R. Kerr, M. W. Pospieszalski, S.-K. Pan, J. E. Effland, and A. W. Lichtenberger, “A 200-300 GHz SIS mixer-preamplifier with 8 GHz IF bandwidth,” in IEEE MTT-S Int. Microwave Symposium Digest, May 2001, pp. 1645-1648.
[7]I. Lopez-Fernandez, J. D. Gallego Puyol, C. Diez Gonzalez, and A. B. Cancio, “Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers,” in IEEE MTT-S Int. Microwave Symposium Digest, June 2006, pp. 1907-1910.
[8]M. A. Morgan, “Custom GaAs and InP components for radio astronomy,” in IEEE Compound Semiconductor Integrated Circuit Symposium Digest, 2005, pp. 216-219.
[9]Y.-J. E. Chen and Y.-I. Huang, “Development of integrated broad-band CMOS low-noise amplifiers,” IEEE Transaction on Circuits and System I: Regular Papers, vol. 54, no. 10, pp. 2120-2127, Oct. 2007.
[10]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, U.K.: Cambridge University, 1998.
[11]R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6–22-GHz broad-band CMOS distributed amplifier,” in Radio Frequency Integrated Circuits Symposium, 2003, pp. 103-106.
[12]L. Yang, Y. Kiat Seng, A. Cabuk, M. Jianguo, D. Manh Anh, and L. Zhenghao, “A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Trans. Circuits System I: Regular Papers, vol. 53, no. 8, pp. 1683-1692, Aug. 2006.
[13]Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004.
[14]Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS lownoise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[15]L. Hyung-Jin, H. Dong Sam, and S. S. Choi, “A systematic approach to CMOS low-noise amplifier design for ultra-wideband applications,” in Proc. IEEE Int. Symp. Circuits Syst., May 2005, pp. 3962-3965.
[16]Yunseo Park, Chang-Ho Lee, J. D. Cressler, and J. Laskar, “The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1687-1697, June 2006.
[17]Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Second Edition, Prentice-Hall, Inc., 1997.
[18]Marc Camiade, “Overview on GaAs MMICs for automotive radar,” in GaAs IC Symposium, Oct. 2002, pp. 29-32.
[19]K. Kamozaki, N. Kurita, W. Hioe, T. Tanimoto, H. Ohta, T. Nakamura, and H. Kondoh, “A 77GHz T/R MMIC chip set for automotive radar systems,” in GaAs IC Symposium, Oct. 1997, pp. 275-278.
[20]R. Eye and D. Allen, “77 GHz low noise amplifier for automotive radar applications,” in GaAs IC Symposium, 2003, pp. 139-142.
[21]N. Tanahashi, K. Kanaya, T. Matsuzuka, I. Katoh, Y. Notani, T. Ishida, T. Oku, T. Ishikawa, M. Komaru, and Y. Matsuda, “A W-band ultra low noise amplifier MMIC using GaAs pHEMT,” in IEEE MTT-S Int. Microwave Symp., June 2003, vol. 3, pp. 2225-2228.
[22]A. Tessmann, L. Verweyen, N. Neumann, H. Massler, W. H. Haydl, A. Hulsmann, and M. Schlechtweg, “A 77 GHz GaAs pHEMT transceiver MMIC for automotive sensor applications,” in GaAs IC Symposium, Oct. 1992, pp. 207-210.
[23]A. M. Abbosh and M. E. Bialkowski, “Design of compact directional couplers for UWB applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 2, pp.189-194, Feb. 2007.
[24]Pei-Si Wu, Chi-Hsueh Wang, Tian-Wei Huang, and Huei Wang, “Compact and broadband millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3106-3114, Oct. 2005.
[25]F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002.
[26]H. Zarei, C. T. Charles, and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol.54, no. 8, pp. 1647-1656, Aug. 2007.
[27]H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2369-2374, Dec. 1996.
[28]Hitoshi Hayashi, Tadao Nakagawa, and Katsuhiko, “A miniaturized MMIC analog phase shifter :using two quarter-wave-length transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 150-153, Jan. 2002.
[29]David M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons, Inc., 2005.
[30]Frank Ellinger, Heinz Jäckel, and Werner Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lump elements,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1135-1140, April 2003.
[31]Liang-Huang Lu and Yu-Te Liao, “A 4-GHz phase shifter MMIC in 0.18-μm CMOS,” IEEE Microwave And Wireless Components Letter, vol. 15, no. 10, pp. 694-696, Oct. 2005.
[32]R.V. Garver, “Broadband diode phase shifters,” in IEEE Trans. Microwave Theory Tech., vol. 71, no. 1, pp.178-179, May 1971.
[33]Dong-Woo Kang, Hui Dong Lee, Chung-Hwan Kim, and Songcheol Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 11, pp.294-301, Jan. 2006.
[34]Mathew A. Morton, Jonahtan P. Comeau, John D. Cressler, Mark Mitchell, and John Papapolymerou, “Sources of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4032-4040, Dec. 2006.
[35]Behzad Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, No. 9, pp. 1415-1424, Sept. 2004.
[36]H. Grubinger, G. von Buren, H. Barth, and R. Vahldieck, “Continuous tunable phase shifter based on injection locked local oscillators at 30 GHz,” in IEEE MTT-S Int. Microwave Symposium Dig., June 2006, pp.1921-1924.
[37]Hannes Grubinger, Helmut Barth, and Reudiger Vahldieck, “An active low-noise receiver with electronic beam forming capability at Ka-band frequencies,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 5, pp. 1013-1023, May 2008.
[38]Harish Krishnaswamy and Hossein Hashemi, “Effect of process mismatches on integrated CMOS phase arrays based on multiphase tuned ring oscillators,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 6, pp. 1305-1315, June 2008.
[39]James F. Buckwalter, Aydin Babakhani, Abbas Komijani, and Ali Hajimiri, “An integrated subharmonic coupled-oscillator scheme for a 60-GHz phased array transmitter,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4217-4280, Dec. 2006.
[40]Robert A. York and Tatsuo Itoh, “Injection and phase locking techniques for beam control,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 1920-1929, Nov. 1998.
[41]http://www.agilent.com
[42]J. E. Fernandez, “A noise-temperature measurement system using a cryogenic attenuator,” in JPL TMD Progress Report, vol. 42-135, Nov. 15, 1998.
[43]X. Zang and A. S. Daryoush, “Full 360° phase shifting of injection locked oscillators,” IEEE Microwave And Wireless Components Let., vol. 3, no. 1, pp. 14-16, Jan. 1993.
[44]Pei-Si Wu, Hong-Yeh Chang, Ming-Da Tsai, Tian-Wei Huang, and Huei Wang, “New miniature 15-20-GHz continuous-phase/ampliftude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 10-19, Jan. 2006.
[45]Kwang-Jin Koh and Gabriel M. Rebeiz, “A 0.13-μm CMOS phase shifters for X- Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[46]Kwang-Jin Koh and Gabriel M. Rebeiz, “An X- and Ku-band 8-element phased–array receiver in 0.18-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1360-1371, June 2008.
[47]Po-Yu Chen, Tian-Wei Huang, Huei Wang, Chung-Hsu Chen, and Pane-Chane Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum methods,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp. 1414-1424, May. 2004.
[48]D. S. McPherson and S. Lucyszyn, “Vector modulator for W-band software radar techniques,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 8, pp. 1451-1461, Aug. 2001.
[49]Behzad Razavi, Design of Integrated Circuits for optical Communications, First Edition, McGraw-Hill Companies, Inc., 2003.
[50]Farbod Behbahani, Yoji Kishgami, John Leete, and Asad A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001.
[51]Yalin Jin and Cam Nguyen, “Ultra-compact high-linearity high-power fully integrated DC-20-GHz 0.18-μm CMOS T/R switch,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, pp. 30-36, Jan. 2007.
[52]Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, July 2004.
[53]Behzad Razavi, Design of Analog CMOS Integrated Circuits, International Edition, McGraw-Hill Companies, Inc., 2001.
[54]Mei-Chao Yeh, Zuo-Min Tsai, Ren-Chieh Liu, Kun-You Lin, Ying-Tang Chang, and Huei Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. on Microwave Theory and Tech., vol. 54, no. 1, pp. 31-39, Jan. 2006.
[55]Arun Natarajan, Abbas Komijani, and Ali Hajimiri, “A fully integrated 24-GHz phased-array tamsmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502-2514, Dec. 2005.
[56]M. E. Hines, Jean-Claude R. Collinet, and John G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. on Microwave Theory and Tech., vol. 16, no. 9, pp. 738-742, Sep. 1968.
[57]C. C. Yang, B. L. Nelson, B. R. Allen, W. L. Jones, and J. B. Horton, “Cryogenic characteristics of wide-band pseudomorphic HEMT MMIC low-noise amplfiers,” IEEE Trans. on Microwave Theory and Tech., vol. 41, no. 6, pp. 992-997, June/July 1993.
[58]M. R. Murti, J. Laskar, S. Nuttinck, S. Yoo, A. Raghavan, J. I. Bergman, J. Bautista, R. Lai, R. Grundbacher, M. Barsky, P. Chin, and P. H. Lui, “Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 12, pp. 2579-2597, Dec. 2000.
[59]M. E. Hines, Jean-Claude R. Collinet, and John G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Tran. Microw. Theory Tech., vol. 16, no. 9, pp. 738-842, Sept. 1968.
[60]http://www.microwaves101.com
[61]Huei Wang, Dennis Chung-Wen Lo, Richard Lai, Cheng-Chih Yang, and John Berenz, “Cryogenically cooled performance of a monolithic 44-GHz InP-based HEMT low- noise amplifier,” IEEE Microwave And Wireless Components Let., vol. 5, no. 9, pp. 281-283, Sept. 1995.
[62]Niklas Wadefalk, Anders Mellbergs, Iltcho Angelov, Michael E. Barsky, Stacy Bui, Emmanuil Choumas, Ronald W. Grundbacher, Erik Ludvig Kollberg, Richard Lai, Niklas Rorsman, Riotr Starski, Jorgen Stenarson, Dwight C. Streit, and Herbert Zirath, “Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power,” IEEE Tran. Microw. Theory Tech., vol. 51, no. 6, pp. 1705-1710, June 2003.
[63]Charles F. Cambell and Steven A. Brown, “A compact 5-bit phase shifter MMIC for K-band satellite communication systems,” IEEE Tran. Microw. Theory Tech., vol. 48, no. 12, pp. 2652-2656, June 2000.
[64]Christopher Moye, Glenn Sakamoto, and Michael Brand, “A compact broadband, six-bit phasor with integrated digital drivers,” in Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1990, pp. 123-126.
[65]Nagaveni D. Doddamani, Harishchandra, and Anil V. Nandi, “Design of SPDT switch, 6-bit digital attenuator, 6-bit digital phase shifter for L-band T/R module using 0.7-μm GaAs MMIC technology,” in IEEE ICSCN, 2007, pp. 302-307.
[66]K. W. Wong and A. K. Y. Lai, “Phase tuning beyond 180 degrees by injection-locked oscillators,” in IEEE TENCON, 1993, pp. 1-4.
[67]J. M. Lopez-Villegas et al., “Continuous phase shift of sinusoidal signals using injection locked oscillators,” IEEE Microwave And Wireless Components Let., vol. 15, no. 5, pp. 312-314, May 2005.
[68]Victor Arana et al., “Nonlinear synthesis of phase shifters, based on synchronized oscillators,” IEEE Microwave And Wireless Components Let., vol. 15, no. 11, pp. 760-762, Nov. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top