跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱南福
研究生(外文):Nan-Fu Chiu
論文名稱:奈米光柵與晶格能隙於電漿子生物感測器之設計與製作
論文名稱(外文):Design and Fabrication of Active Plasmonic Biosensors with Nano-Grating and Band Gap Structures
指導教授:林啟萬林啟萬引用關係
指導教授(外文):Chii-Wann Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:175
中文關鍵詞:表面電漿子共振奈米光柵晶格能隙電漿子生物感測氧化鋅
外文關鍵詞:Surface plasmon resonancenano-gratingband-gapbioplasmonicszinc oxide (ZnO)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面電漿子共振(surface plasmon resonance, SPR)現象,在過去數十年的研究中,此光學感測技術因具有極高的靈敏度、無須螢光標的與可即時分析化驗樣品等優勢,已成功的應用於薄膜的光學特性量測與氣體、化學、生物分子感測。在本論文中,我們藉由探討奈米光柵與晶格能隙在電漿子生物感測之研究,實驗奈米光柵、主動式電漿子與氧化鋅晶格能隙三種電漿子共振耦合之機制,期望達成電激發之整合式電漿子生物感測元件。
實驗中分別利用光激發與電激發方式,在金屬表面上激發有機半導體發光,探討奈米光柵結構與主動式電漿子共振之所產生的電漿子共振與電漿子態隙特性,其優點為不需要外加雷射激發光源及光學極化片,同樣可達到高靈敏度、快速且即時量測之功能。利用電激發有機發光方式,在有機/金屬二層界面上所產生的SPR特性,經由奈米光柵耦合技術,可改變出光的方向性。另外,利用氧化鋅材料的晶格成長特性對表面電漿子共振的影響,我們在單晶及非晶體的氧化鋅中成功量測出表面電漿子共振的差異。
實驗結果方面,我們量測不同的奈米光柵(金屬及非金屬)在電漿子共振效能之差異。並利用金屬奈米光柵進行生化試驗,以不同入射光源量測共振角與待測物折射值之變動比率,在入射光為643nm的變動比率為 與入射光為833nm的變動比率為 。在主動式電漿子實驗結果,我們以有機半導體發光材料當主動層,並進行不同奈米光柵(金,銀,光阻)與調控奈米週期結構,成功量測出主動式電漿子能隙(SP band-gap)間共振效能之差異,在週期的調變下,每改變100nm可調控電漿子耦合動量為 並改變出光角度 的變化,在多層膜的結構下,四層結構的出光效能增強6倍,而半峰全寬(Full Width at Half Maximum, FWHM)小於50nm。我們配合內部本質的表面電漿共振之產生條件,在沿金屬或表面鍍膜的平面上,觀察感測晶片表面因表面生物分子的結合狀況所引起的訊號變動,與不同待測樣品吸收波長不同之原理,進行生醫檢測及化驗。另外在氧化鋅晶格能隙的實驗中,我們探討單晶及非晶體的氧化鋅之間的共振光強反應,實驗出單晶體氧化鋅有極佳的表面電漿共振態。我們比較ZnO/Au與傳統晶片Cr/Au的電漿子共振之差異,ZnO/Au有3倍以上的共振光強反應及小於3倍的半峰全寬(FWHM),而在禽類病毒(ALV)的實驗中,ZnO/Au也有大於3倍以上的共振光強反應。
預期本技術之產出可同時進行多種表面分子作用之分析,可進一步配合微流道之整合,提供更精確、更微小化的元件設計,使之更適用於高通量與高靈敏度檢測的感測元件之未來發展,更具有製程簡單、成本低、反應速度快、省電、感測體積小等優點,與國內半導體製造技術、光電元件技術與微機電專長相契合具有市場潛力。
Surface plasmon resonance (SPR) phenomenon was described in 1980 and has been used for sensing almost two decades ago. SPR biosensors are optical sensors using polarized surface electromagnetic waves (SEW) to probe molecular interactions between metal film surface and dielectric medium. SPR sensors have the advantages of high sensitivity, label-free and real-time detection. In this paper, the coupling SPP on the nano-grating, the active plasmonics and the zinc oxide (ZnO) band-gap structure for bio-plasmonics were demonstrated. The presented results show that the enhanced performance of plasmonic on nano-grating, the active plasmonics and the ZnO band-gap structure are important for the structure design of novel optical biosensor.
The interaction of SPR on a periodic grating of metal and polymer were investigated in theory and experiment. In addition, we proposed a novel design of plasmonic device without using the conventional external light source and polarizer to produce SPR having the same features, i.e., high sensitivity and real time. The work is based on the electro-excitation of organic and metallic materials, their coupling plasmonics resonance as well as their SP-band gap characteristics. It can induce SPR wave on the metallic surface when proper resonant condition is matched by nano-grating coupled emission. The present experiments provide the multifunctional biological and biochemical sensor technology based on ZnO crystal, which has enhanced sensitivity and accuracy.
We have shown experimentally that strong coupling between electronic and photonic resonances in metal grating and polymer grating really exist. Resonance angle plots of reflectivity of a metal nano-grating sensor, demonstrates the sensitivity of a refractmetric experiment, and . In active plasmonic, our fabricated grating device of various pitches consists of coupled Au, Ag and polymer nanostructure with specific width and symmetric/asymmetric dielectric SP band gap structure. In pitch modulation, results showed that grating at different pitch can match a linear shifting of momentum of about and per 100 nm pitch size. In layer modulation, the resultant emission intensity can achieve a maximum enhancement of 6 times for the 4-Layer device and the Full-Width Half-Maximum (FWHM) was less than 50 nm. We can then observe the emission signal changes due to the presence of surface molecule or specific absorption wavelength of multiple samples. In addition, for ZnO/Au devices tested under water and alcohol, they showed 3 times decrease in FWHM and 3 times the largest shift in intensity interrogation. By testing avian leukosis viruses (ALV) on Cr/Au with ZnO/Au, the ZnO/Au-incorporated chip showed a 3-times enhancement in performance.
In our future work, we will incorporate microfluidics into the device to provide better accuracy and miniaturized design for high throughput applications. We will explore the feasibility of this approach for prototypical systems based on bio-detection or gas-detection. We will miniature optical detectors currently fabricated using VLSI and Optical MEMS integration technology.
Acknowledgement.....................................................................................I
Abstract…………………………………………………………………II
Contents..................................................................................................VI
Figure captions……………………………………..………...………..XI
List of tables……………………………………………..…………XXVI
Chapter 1. Introduction………………………………………………...1
1.1 A brief history of the surface plasmon………………………….…………..1
1.2 Background of SPR sensor………………………………………………….3
1.3 Commercial SPR sensors…………………………………………………...4
1.4 SPR-based sensor: advantages and applications……………………………6
1.5 Motivation…………………………………………………………………..7
1.6 Thesis overview……………………………………………………………..9
Chapter 2. Theoretical background…………………………………..14
2.1 Electromagnetic theory for surface plasmons …………………………….14
2.2 Total internal reflection (TIR), Snell’s Law Fresnel’s equations and Brewster’s angle…………………………………………………………...20
2.3 Excitation of surface plasmons……………………………………………24
2.3.1 Prism coupler………………………...…………………….………24
2.3.2 Grating coupler………………………………………………….…27
2.3.3 Photonic energy gaps in the propagation of SP on grating……...…30
Chapter 3. Advanced Nanostructure Design for Surface Plasmon Photonic Band-Gap Biosensor Device……………….….34
3.1 Experimental setup………………………………………………..……….35
3.1.1 Grating fabrication and biosensor chip design……….……..…..37
3.1.2 Measurement system setup……………………………….……..39
3.2 Results and discussion……………………………………………………..40
3.2.1 1D metal grating nanostructure by E-Beam lithography….……40
3.2.2 Resonance angle measurements on grating nanostructure……...42
3.3 Conclusions………………………………………………………………..50
Chapter 4. Excitation coupling of Au/ZnO band-gap energy for enhancing the performance of surface plasmon resonance biosensor…………………………………..….51
4.1 ZnO film on ATR prism based SPR sensing………………..…………......52
4.2 Experimental setup………………………………….……………………..53
4.3 Results and discussion………………………………………….………….54
4.3.1 Comparison different deposition parameters of ZnO films by RF sputter technology……………………………………………………61
4.3.2 Comparison of ZnO films prepared by RF sputter and E-beam evaporation deposition……………………………………………….63
4.4 Application analysis of Avian leukosis viruses detection…………………63
4.5 Conclusions………………………………………………………..………66
Chapter 5. Excitation of organic semiconductor molecular by surface plasmon grating coupled emission……………..68
5.1 Experimental setup……………………………………………………...…69
5.1.1 Devices characterization:………………………………...……..69
5.1.2 Devices fabrication…………………………………...…………70
5.1.3 Measurement system………………………….……………..….74
5.1.4 System operational modes…………………………………...….77
5.2 Surface plasmon enhanced photoluminescence from organic/metal interface……………………………………………………………………79
5.2.1 Metal and organic interfaces for surface plasmon polaritons...…80
5.2.2 Device Si-1 model: Si-Si3N4 Sub/Au film/Au grating/Alq3.......83
5.2.3 Device Si-2: Si-Si3N4 Sub/Au film/PR grating/Alq3..................97
5.2.4 Device Si-3: Si-Si3N4 Sub/Ag film/Ag grating/Alq3…………105
5.2.5 Comparisons between Si-1 model and Si-2 model……..……..107
5.2.6 Comparisons between devices Si-1 model and Si-3 model…...110
5.2.7 Plasmonic coupled emission from top emission device…….…114
5.3 Conclusions……………………………………………………..………..116
Chapter 6. Enhancement and tunability of active plasmonic by multilayer grating coupled emission……………….…..117
6.1 Experimental setup ………………………………..……………………..119
6.2 Model of Active plasmonic via SPGCE…………………...........………..121
6.3 Results and discussion…………………………….…………………..….124
6.4 Conclusions………………………………………………………...…….131
Chapter 7. Control of highly directional surface plasmon grating coupled emission via plasmonics band-gap……...……132
7.1 Experimental setup………………………………………….…………....133
7.2 Results and discussion………………………………………………...….135
7.3 Conclusions……………………………………………………...……….141
Chapter 8. Light Control in Organic Electroluminescence Devices by Plasmonic Grating Coupled Emission for Biosensing Application........................................................................142
8.1 Experimental setup…………………………………………………...…..144
8.2 OEL-SPGCE transparent devices……………………………............…..147
8.3 Results and discussion………………………………………………..…..150
8.4 Conclusions……........................................................................................155
Chapter 9. Conclusions……...................................…………………157
References..............................................................................................162
[1]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts Mod. Phys. 111, 1, Verlag, Berlin, (1988).
[2]R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. of the Physical Society of London, 18, 269-275 (1902).
[3]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Magm. 4, 396-402 (1902).
[4]U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-stationary Waves on Metallic Surfaces (Sommerfeld‘s Waves),” J. Opt. Soc. Am. 31, 213-222 (1941).
[5]T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40-44 (1959).
[6]R. H. Ritchie “Plasma Losses by Fast Electrons in Thin Films” Phys. Rev. 106, 874-881 (1957).
[7]C. J. Powell and J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115, 869-875 (1959).
[8]C. J. Powell, J. B. Swan “Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium”, Phys. Rev. 118, 640-643 (1960).
[9]Y. Y Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Letters 19, 511-514 (1967).
[10]J. E. Stewart and W. S. Gallaway, ‘‘Diffraction anomalies in. grating spectrometers,’’ Appl. Opt. 1, 421-429 (1962).
[11]A. Hessel and A. A. Oliner, “A new theory of Wood''s anomalies on optical gratings,” Appl. Opt. 10, 1275-1299 (1965).
[12]J. Hagglund and F. Sellberg, “Reflection Absorption, and Emission of Light by Opaque Optical Gratings,” J. Opt. Soc. Am. 56, 1031-1040 (1966).
[13]R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Revi. Lett. 21, 1530-1533 (1968).
[14]A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Zeitschrift f¨ur Physik, 216, 398-410 (1968).
[15]E. Kretschmann and H. Raether, “Radiative Decay of Non-radiative Surface Plasmons Excited by Light,” Z. Naturforsch 23, 2135-2136 (1968).
[16]E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313-324 (1971).
[17]A. D. Boardman (editor), Electromagnetic Surface Modes, Wiley, (1982).
[18]V. M. Agranovitch and D. L. Mills (editors), Surface Polaritons, North-Holland, (1982).
[19]I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[20]J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499-509 (1980).
[21]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667-669 (1998).
[22]H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec,” Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).
[23]L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[24]T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B 16, 1743-1748 (1999).
[25]W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W.Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[26]H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[27]A. Porto, F. J. Garcìa-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[28]Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[29]F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[30]H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000).
[31]J. A. Porto, F. J. Garcia-Vidal, and J. P. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[32]P. Lalanne, J. P. Hugonin, S. Astelean, M. Palmaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48-51 (2000).
[33]S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A, Pure Appl. Opt. 4, 154-160 (2002).
[34]F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[35]A. Barbara, P. Quémerais, E. Bustarret, T. López, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic grating,” Eur. Phys. J. D 23, 143-154 (2003).
[36]F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70-76 (2005).
[37]J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26-37 (2005).
[38]S. S. Jha, J. R. Kirtley, and J. C. Tsang, “Intensity of Raman scattering from molecules adsorbed on a metallic grating,” Phys. Rev. B 22, 3973-3982 (1980).
[39]M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[40]A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[41]N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schinder, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82, 3095-3097 (2003).
[42]H. X. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999).
[43]S. M. Nie, S. R. Emery, “Probing single molecules and single. nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[44]G. H. Agarwal and C. V. Kunasz, “Dipole radiation in the presence of a rough surface. Conversion of a surfacepolariton field into radiation,” Phys. Rev. B 26, 5832-5842 (1982).
[45]P. T. Leung, Y. S. Kim, and T. F. George, “Decay of molecules at corrugated thin metal films,” Phys. Rev. B 39, 9888-9893 (1989).
[46]T. Suzuki and P. K. L. Yu, “Experimental and theoretical study of dipole emission in the two-dimensional photonic band structure of the square lattice with dielectric cylinders,” J. Appl. Phys. 79, 582-594 (1996).
[47]R. M. Amos and W.L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59, 7708-7714 (1999).
[48]Y. Todorov, I. Abram, and C. Minot, “Dipole emission into rectangular metallic gratings with subwavelength slits,” Phys. Rev. B 71, 075116 (2005).
[49]R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522-1524 (1999).
[50]H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A 17, 1048-1058 (2000).
[51]A.-L. Fehrembach, S. Enoch, and A. Sentenac, “Highly directive light sources using two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 4280-4282 (2001).
[52]D. Delbeke, P. Bienstman, R. Bockstaele, and R. Baets, “Rigourous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode,” J. Opt. Soc. Am. A 19, 871-880 (2002).
[53]R. Colombelli, K. Stinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Trennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374-1377 (2003).
[54]Y. Todorov, I. Sagnes, U. Gennser, N. Coron, C. Minot, and I. Abram, “Spontaneous emission enhancement in quantum cascade structures in the terahertz domain,” Phys. Status Solidi C 4, 524-527 (2007).
[55]K. W. Gossen and S. A. Lyon, “Grating enhanced quantum well detector,” Appl. Phys. Lett. 47, 1257-1259 (1985).
[56]D. Heitmann and U. Mackens, “Grating-coupler-induced intersubband resonances in electron inversion layer of silicon,” Phys. Rev. B 33, 8269-8283 (1986).
[57]W. J. Li and B. D. McCombe, “Coupling efficiency of metallic gratings for excitation of intersubband transitions in quantum-well structures,” J. Appl. Phys. 71, 1038-1040 (1992).
[58]C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple wavelength quantum cascade laser,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[59]A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett. 89, 141116 (2006).
[60]L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660-11667 (2006).
[61]O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. Xu, A. Trediccuci, F. Beltram, H. E. Beere, D. A. Richie, and V. Tamosiunas, “Surface plasmon photonic structures in terahertz quantum cascade lasers,” Opt. Express 14, 5335-5345 (2006).
[62]S. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672-11680 (2006).
[63]S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum cascade lasers in metal-metal waveguides,” Opt. Express 15, 113-128 (2007).
[64]R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838-2841 (1986).
[65]D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315-4317 (2002).
[66]D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679-3681 (2002).
[67]S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182-184 (2004).
[68]P. Andrew, W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002-1005 (2004).
[69]J. R. Oppenheimer, “Internal conversion in photosynthesis.” Phys. Rev. 60, 158-165 (1941).
[70]M. M, Mekis A, Dodabalapur A,et al. “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7-9 (1999).
[71]C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982).
[72]B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299-304 (1983).
[73]http://www.biacore.com/lifesciences/index.html
[74]K. Nagata, H. Handa, Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE, Springer-Verlag, Tokyo, (2000).
[75]J. Homola, S. S. Yee, G. Gauglitz, “Surface Plasmon resonance sensor: review,” Sens. Actuators B 54, 3-15 (1999).
[76]J. Homola, I. Koudela, S. S. Yee, “Surface Plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[77]W. M. Mullett, E. P. C. Lai, J. M. Yeung, “Surface plasmon resonance-based immunoassays,” Methods 22, 77-91 (2000)
[78]J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[79]A. Ramanavièius, F. W. Herberg, S. Hutschenreiter, et al, “Biomedical application of surface plasmon resonance biosensors (review),” Acta. Medica Lituanica 12, 1-9 (2005).
[80]J. Dostalek, J. Homola, M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction grating,” Sens. Actuators B 107, 154-161 (2005).
[81]J. Homola, “Surface Plasmon Resonance (SPR) biosensors and their application in food safety and security,” Frontiers in Planar Lightwave Circuit Technology 216, 101-118 (2006).
[82]J. Homola, M. Piliarik, J. Dostálek, et al, Surface Plasmon Resonance Based Sensors, Springer Berlin Heidelberg, (2006).
[83]J. Homola, M. Piliarik, R. Horváth, et al, Springer Series on Chemical Sensors and Biosensors Methods and Applications: Surface Plasmon Resonance Based Sensors, Series Ed.: O.S. Wolfbeis, 4, 1612-7617 (2006).
[84]M. A. Cooper, “Optical biosensors in drug discovery,” Nature reviews 1, 515-528 (2002).
[85]M. A. Cooper, “Optical biosensors: where next and how soon?” Drug Disc. Today 11, 1061-1067 (2006).
[86]www.htsbiosystems.com/
[87]S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[88]M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Cambridge University Press, Cambridge, (1999).
[89]S. O. Kasap, optoelectronics and photonics principles and practices, Prentice-Hall, New Jersey, (2001).
[90]A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75 3917-3919 (1999).
[91]D. Heitmann, N. Kroo, C. Schulz and Z. Szentirmany, Dispersion Anomalies of Surface Plasmons on Corrugated Metal-Insulator Interfaces, Phys. Rev. B, 35 2660-2666 (1987).
[92]V. Celli, P. Tran, A. A. Maradudin and D. L. Mills, “k Gaps for Surface Polaritons on Gratings,” Phys. Rev. B 37, 9089-9092 (1988).
[93]P. Halevi and O. Mata-M´endez, “Electromagnetic Modes of Corrugated Thin Films and Surfaces with a Transition Layer,” Phys. Rev. B 39, 5694-5705 (1989).
[94]S. H. Zaidi, M. Yousef and S. R. J. Brueck, “Grating Coupling to Surface Plasma Waves. II. Interactions between First- and Second-Order Coupling,” J. of the Optical Society of America 8, 1348-1359 (1991).
[95]W. L. Barnes, T. W. Priest, S. C. Kitson and J. R. Sambles, “Physical Origin of Photonic Energy Gaps in the Propagation of Surface Plasmons on Gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[96]B. Fischer, T. M. Fischer and W. Knoll, “Dispersion of Surface Plasmons in Rectangular, Sinusoidal, and Incoherent Silver Gratings,” J. Appl. Phys. 75, 1577-1581 (1994).
[97]H. A. Haus, Waves and fields in optoelectronics, central book company, Taipei, Taiwan, (1985).
[98]S. Kawata, “Near-Field Microscope Probes Utilizing Surface Plasmon Polaritons,” Topics Appl. Phys. 81, 15-27 (2001).
[99]D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” 35, 2660-2666 (1987).
[100]H. Kano and S. Kawata, “Grating coupled surface Plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. 34, 331-335 (1995).
[101]D. W. Unfricht1, S. L. Colpitts1, S. M. Fernandez2 and M. A. Lynes, “Grating-coupled surface plasmon resonance: A cell and protein microarray platform,” Proteomics 5, 4432-4442 (2005).
[102]G. -B. Jin, D. W. Unfricht, S. M. Fernandez, M. A. Lynes, “Cytometry on a chip Cellular phenotypic and functional analysis using grating-coupled surface plasmon resonance,” Biosensors and Bioelectronics 22, 200-206 (2006).
[103]M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Z. Bor, M. Pietralla, O. Marti, ”Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Organic Electronics 8, 148-160 (2007).
[104]N. -F. Chiu, S. -Y. Nien, C. Yu, J. -H. Lee, C. -W. Lin, “Advanced Metal Nanostructure Design for Surface Plasmon Photonic Bandgap Biosensor Device,” Proceedings of IEEE 28th EMBS, New York, Sep. 1-3, (2006).
[105]C. -W. Lin, N. -F. Chiu, J. -G. Huang, C. -K. Lee, “Toward integrated Plasmonics for biosensing”, 5th International Conference on Nanochannels, Microchannels and Minichannels, Proceedings of ASME ICNMM 2007 (Invited Paper), Puebla, Mexico, June 18-20, (2007).
[106]A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Azimuth-angle-dependent reflectivity data from metallic gratings,” J. of modern optics 45, 1019-1028 (1998).
[107]K. Nagata, H. Handa, Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE, Springer-Verlag, Tokyo, (2000).
[108]C. Rhodes and S. Franzen, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[109]C. -W. Lin, K. -P. Chen, S. -M. Lin, C. -K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B: Chem. 113, 169-176 (2006).
[110]C. -W. Lin, K. -P. Chen, M. -C. Su, T. -C. Hsiao, S. -S. Lee, S. -M. Lin, X. -J Shi, C. -K. Lee, “Admittance loci design method for multilayer surface plasmon resonance devices,” Sens. Actuators B: Chem. 117, 219-229 (2006).
[111]C. -W. Lin, K. -P. Chen, M. -C. Su, C. -K. Lee, C. -C. Yang, “Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine,” Opt. Quantum Electron 37, 1423-1437 (2005).
[112]A. V. Mel’nichuk, L. Y. Mel’nichuk, and Y. A. Pasechnik, “Surface plasmon-phonon polaritons of hexagnal zinc oxide,” Tech. Phys. 43, 52-55 (1998).
[113]A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90, 231106 (2007).
[114]C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[115]H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Exp. 14, 2372-2379 (2006).
[116]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, “A comprehensive review of ZnO materials ad devices,” J. Appl. Phys. 98, 041301 (2005).
[117]X. Wang, C. J. Summers, and Z. L. Wang, “Self-attraction among aligned Au/ZnO nanorods under electron beam,” Appl. Phys. Lett. 86, 013111 (2005).
[118]A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
[119]F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Revi. Lett. 99, 085502 (2007).
[120]A. Goldenblum, V. Teodorescu, F. E. Wagner, R. Manaila, G. Filoti, J. P. Deville, D. Pantelica, F. Negoita, A. Belu-marian, N. Scantee, “Structral properties of sputtered ZnO:Au films,” Philos. mag. A 82, 193-204 (2002).
[121]W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids 58, 853-857 (1997).
[122]S. C. Kitson, W. L. Barnes, and J. R. Samblesc, “Surface Plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441-11445 (1995).
[123]S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Optics Comm. 122, 147-154 (1996).
[124]S. C. Kittson, W. L. Barnes, J. R. Sambles and N. P. K. Cotter, “Excitation of molecular fluorescence via surface plasmon polaritons,” J. of modern optics 43, 573-582 (1996).
[125]R. M. Amos, and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59, 7708-7714 (1999).
[126]P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of Surface Plasmons in Organic Light-Emitting Diodes,” IEEE J. Sel. Top. Quant. Electron. 8, 378-386 (2002).
[127]P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393-1396 (2002).
[128]S. Wedge, J. A. E. Wasey, I. Sage, W. L. Barnes, “Surface plasmon mediated emission from organic materials,” Proc. of SPIE 4642, 79-87 (2002).
[129]W. L. Barnes and S. Wedge, “Surface plasmon polariton mediated emission of light,” Proc. of SPIE 5450, 412-415 (2004).
[130]S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[131]W. L. Barnes, “Light-emitting devices Turning the tables on surface plasmons,” Nat. Mater. 3, 588-589 (2004).
[132]I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[133]S. Wedge, J. A. E. Wasey, and W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182-184 (2004).
[134]J. Bellessa, C. Bonnand, and J. C. Plenet and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93, 306404 (2004).
[135]S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opti. Exp. 12, 3673-3685 (2004).
[136]S. Wedge, S. H. Garrett, I. Sage and W. L. Barnes, “Photoluminescence emission through thin metal films via coupled surface plasmon-polaritons,” Journal of Modern Optics 52, 833-843 (2005).
[137]A. Giannattasio, S. Wedge, L. H. Smith and W. L. Barnes, “The emission of light through thin metal films via surface plasmon polaritons,” Proc. of SPIE 5840, 353-358 (2005).
[138]C. J. Yates and I. D. W. Samuel, P. L. Burn, S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105 (2006).
[139]G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[140]S. Wedge, A. Giannattasio, W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Organic Electronics 8, 136-147(2007).
[141]J. R. Lakowicz, “Principles of fluorescence spectroscopy,” second edition, Kluwer Academic/ Plenum Publishers, New York (1999).
[142]J. R. Lakowicz, “Radiative Decay Engineering: Biophysical and Biomedical Applications,” Anal. Biochem. 298, 1-24 (2001).
[143]C. D. Geddes, and J. R. Lakowicz, “Metal-enhanced florescence,” J. Fluorescence 12, 121-129 (2002).
[144]M. G. Weber, and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510-2513 (1985).
[145]M. G. Weber, and D. L. Mills, “Determination of surface-polariton minigaps on grating structures- A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B 34, 2893-2894 (1986).
[146]J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic crystals, molding the flow of light,” (Princeton University Press, Princeton, NJ, 1995).
[147]T. -C. Chiang, T. Miller, and W. E. McMahon, ”Ag-Au superlattice band structure,” Phys. Rev. B 50, 11102-11106 (1994).
[148]G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427(2003).
[149]N. -F. Chiu, J. -H. Lee, C. -H. Kuan, K. -C. Wu, C. -K. Lee, C. -W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
[150]N. -F. Chiu, S. -Y. Nien, J. -H. Lee, C. -H. Kuan, K. -C. Wu, C. -K. Lee, C. -W. Lin, “Enhancement and Tunability of Active Plasmonic by Multilayer Grating Coupled Emission,” Opt. Express 15, 11608 (2007).
[151]N. -F. Chiu, S. -Y. Nien, L. -C. Chien, J. -H. Lee, C. -H. Kuan, C. -W. Kin, “Enhanced luminescence of organic/metal nanostructure with symmetric dielectric layers for long-range surface Plasmon polaritons,” Proc. of SPIE 6323, 63231V (2006).
[152]N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11, 682-687 (2003).
[153]R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Revi. Lett. 30, 2838-2841 (1986).
[154]D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315-4317 (2002).
[155]S. Wedge, W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004).
[156]J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90, 081106 (2007).
[157]J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface Plasmon-coupled emission: a new method for high sensitivity detection.” Biochem. Biophys. Res. Commun. 307, 435-439 (2003).
[158]I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission.” Anal. Biochem. 324, 170-182 (2004).
[159]T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami and T. akamatsu, “Emission light properties from Adrhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mat. Res. Soc. Symp. 660, 1-6 (2001).
[160]K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato and F. Kaneko, “Surface plasmon emission light property due to molecular luminescence and molecular interaction,” J. J. Appl. Phys. 44, 599-603 (2005).
[161]G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[162]J. Enderlein, and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection.” Opt. Express 13, 8855-8865 (2005).
[163]S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147-154 (1996).
[164]J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30-32 (2003).
[165]Y. -J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings.” Opt. Express 14, 10825-10830 (2006).
[166]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232 (2003).
[167]I. Pockrand and A. Brillante, “Nonradiative decay of excited molecles near a metal surface.” Chem. Phys. Lett. 69, 499-504 (1980).
[168]J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Readiative decay engineering 2: effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer.” Anal. Biochem. 301, 261-277 (2002).
[169]D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top