|
[1]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts Mod. Phys. 111, 1, Verlag, Berlin, (1988). [2]R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. of the Physical Society of London, 18, 269-275 (1902). [3]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Magm. 4, 396-402 (1902). [4]U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-stationary Waves on Metallic Surfaces (Sommerfeld‘s Waves),” J. Opt. Soc. Am. 31, 213-222 (1941). [5]T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40-44 (1959). [6]R. H. Ritchie “Plasma Losses by Fast Electrons in Thin Films” Phys. Rev. 106, 874-881 (1957). [7]C. J. Powell and J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115, 869-875 (1959). [8]C. J. Powell, J. B. Swan “Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium”, Phys. Rev. 118, 640-643 (1960). [9]Y. Y Teng and E. A. Stern, “Plasma Radiation from Metal Grating Surfaces,” Phys. Rev. Letters 19, 511-514 (1967). [10]J. E. Stewart and W. S. Gallaway, ‘‘Diffraction anomalies in. grating spectrometers,’’ Appl. Opt. 1, 421-429 (1962). [11]A. Hessel and A. A. Oliner, “A new theory of Wood''s anomalies on optical gratings,” Appl. Opt. 10, 1275-1299 (1965). [12]J. Hagglund and F. Sellberg, “Reflection Absorption, and Emission of Light by Opaque Optical Gratings,” J. Opt. Soc. Am. 56, 1031-1040 (1966). [13]R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Revi. Lett. 21, 1530-1533 (1968). [14]A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Zeitschrift f¨ur Physik, 216, 398-410 (1968). [15]E. Kretschmann and H. Raether, “Radiative Decay of Non-radiative Surface Plasmons Excited by Light,” Z. Naturforsch 23, 2135-2136 (1968). [16]E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313-324 (1971). [17]A. D. Boardman (editor), Electromagnetic Surface Modes, Wiley, (1982). [18]V. M. Agranovitch and D. L. Mills (editors), Surface Polaritons, North-Holland, (1982). [19]I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978). [20]J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499-509 (1980). [21]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667-669 (1998). [22]H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec,” Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998). [23]L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001). [24]T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B 16, 1743-1748 (1999). [25]W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W.Ebbesen, Phys. Rev. Lett. 92, 107401 (2004). [26]H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944). [27]A. Porto, F. J. Garcìa-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999). [28]Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001). [29]F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [30]H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000). [31]J. A. Porto, F. J. Garcia-Vidal, and J. P. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999). [32]P. Lalanne, J. P. Hugonin, S. Astelean, M. Palmaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48-51 (2000). [33]S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A, Pure Appl. Opt. 4, 154-160 (2002). [34]F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [35]A. Barbara, P. Quémerais, E. Bustarret, T. López, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic grating,” Eur. Phys. J. D 23, 143-154 (2003). [36]F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70-76 (2005). [37]J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26-37 (2005). [38]S. S. Jha, J. R. Kirtley, and J. C. Tsang, “Intensity of Raman scattering from molecules adsorbed on a metallic grating,” Phys. Rev. B 22, 3973-3982 (1980). [39]M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985). [40]A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992). [41]N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schinder, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82, 3095-3097 (2003). [42]H. X. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999). [43]S. M. Nie, S. R. Emery, “Probing single molecules and single. nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997). [44]G. H. Agarwal and C. V. Kunasz, “Dipole radiation in the presence of a rough surface. Conversion of a surfacepolariton field into radiation,” Phys. Rev. B 26, 5832-5842 (1982). [45]P. T. Leung, Y. S. Kim, and T. F. George, “Decay of molecules at corrugated thin metal films,” Phys. Rev. B 39, 9888-9893 (1989). [46]T. Suzuki and P. K. L. Yu, “Experimental and theoretical study of dipole emission in the two-dimensional photonic band structure of the square lattice with dielectric cylinders,” J. Appl. Phys. 79, 582-594 (1996). [47]R. M. Amos and W.L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59, 7708-7714 (1999). [48]Y. Todorov, I. Abram, and C. Minot, “Dipole emission into rectangular metallic gratings with subwavelength slits,” Phys. Rev. B 71, 075116 (2005). [49]R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522-1524 (1999). [50]H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A 17, 1048-1058 (2000). [51]A.-L. Fehrembach, S. Enoch, and A. Sentenac, “Highly directive light sources using two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 4280-4282 (2001). [52]D. Delbeke, P. Bienstman, R. Bockstaele, and R. Baets, “Rigourous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode,” J. Opt. Soc. Am. A 19, 871-880 (2002). [53]R. Colombelli, K. Stinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Trennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374-1377 (2003). [54]Y. Todorov, I. Sagnes, U. Gennser, N. Coron, C. Minot, and I. Abram, “Spontaneous emission enhancement in quantum cascade structures in the terahertz domain,” Phys. Status Solidi C 4, 524-527 (2007). [55]K. W. Gossen and S. A. Lyon, “Grating enhanced quantum well detector,” Appl. Phys. Lett. 47, 1257-1259 (1985). [56]D. Heitmann and U. Mackens, “Grating-coupler-induced intersubband resonances in electron inversion layer of silicon,” Phys. Rev. B 33, 8269-8283 (1986). [57]W. J. Li and B. D. McCombe, “Coupling efficiency of metallic gratings for excitation of intersubband transitions in quantum-well structures,” J. Appl. Phys. 71, 1038-1040 (1992). [58]C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple wavelength quantum cascade laser,” IEEE J. Quantum Electron. 38, 569-581 (2002). [59]A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett. 89, 141116 (2006). [60]L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14, 11660-11667 (2006). [61]O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. Xu, A. Trediccuci, F. Beltram, H. E. Beere, D. A. Richie, and V. Tamosiunas, “Surface plasmon photonic structures in terahertz quantum cascade lasers,” Opt. Express 14, 5335-5345 (2006). [62]S. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672-11680 (2006). [63]S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum cascade lasers in metal-metal waveguides,” Opt. Express 15, 113-128 (2007). [64]R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838-2841 (1986). [65]D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315-4317 (2002). [66]D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679-3681 (2002). [67]S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182-184 (2004). [68]P. Andrew, W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002-1005 (2004). [69]J. R. Oppenheimer, “Internal conversion in photosynthesis.” Phys. Rev. 60, 158-165 (1941). [70]M. M, Mekis A, Dodabalapur A,et al. “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7-9 (1999). [71]C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982). [72]B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299-304 (1983). [73]http://www.biacore.com/lifesciences/index.html [74]K. Nagata, H. Handa, Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE, Springer-Verlag, Tokyo, (2000). [75]J. Homola, S. S. Yee, G. Gauglitz, “Surface Plasmon resonance sensor: review,” Sens. Actuators B 54, 3-15 (1999). [76]J. Homola, I. Koudela, S. S. Yee, “Surface Plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999). [77]W. M. Mullett, E. P. C. Lai, J. M. Yeung, “Surface plasmon resonance-based immunoassays,” Methods 22, 77-91 (2000) [78]J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003). [79]A. Ramanavièius, F. W. Herberg, S. Hutschenreiter, et al, “Biomedical application of surface plasmon resonance biosensors (review),” Acta. Medica Lituanica 12, 1-9 (2005). [80]J. Dostalek, J. Homola, M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction grating,” Sens. Actuators B 107, 154-161 (2005). [81]J. Homola, “Surface Plasmon Resonance (SPR) biosensors and their application in food safety and security,” Frontiers in Planar Lightwave Circuit Technology 216, 101-118 (2006). [82]J. Homola, M. Piliarik, J. Dostálek, et al, Surface Plasmon Resonance Based Sensors, Springer Berlin Heidelberg, (2006). [83]J. Homola, M. Piliarik, R. Horváth, et al, Springer Series on Chemical Sensors and Biosensors Methods and Applications: Surface Plasmon Resonance Based Sensors, Series Ed.: O.S. Wolfbeis, 4, 1612-7617 (2006). [84]M. A. Cooper, “Optical biosensors in drug discovery,” Nature reviews 1, 515-528 (2002). [85]M. A. Cooper, “Optical biosensors: where next and how soon?” Drug Disc. Today 11, 1061-1067 (2006). [86]www.htsbiosystems.com/ [87]S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [88]M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Cambridge University Press, Cambridge, (1999). [89]S. O. Kasap, optoelectronics and photonics principles and practices, Prentice-Hall, New Jersey, (2001). [90]A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75 3917-3919 (1999). [91]D. Heitmann, N. Kroo, C. Schulz and Z. Szentirmany, Dispersion Anomalies of Surface Plasmons on Corrugated Metal-Insulator Interfaces, Phys. Rev. B, 35 2660-2666 (1987). [92]V. Celli, P. Tran, A. A. Maradudin and D. L. Mills, “k Gaps for Surface Polaritons on Gratings,” Phys. Rev. B 37, 9089-9092 (1988). [93]P. Halevi and O. Mata-M´endez, “Electromagnetic Modes of Corrugated Thin Films and Surfaces with a Transition Layer,” Phys. Rev. B 39, 5694-5705 (1989). [94]S. H. Zaidi, M. Yousef and S. R. J. Brueck, “Grating Coupling to Surface Plasma Waves. II. Interactions between First- and Second-Order Coupling,” J. of the Optical Society of America 8, 1348-1359 (1991). [95]W. L. Barnes, T. W. Priest, S. C. Kitson and J. R. Sambles, “Physical Origin of Photonic Energy Gaps in the Propagation of Surface Plasmons on Gratings,” Phys. Rev. B 54, 6227-6244 (1996). [96]B. Fischer, T. M. Fischer and W. Knoll, “Dispersion of Surface Plasmons in Rectangular, Sinusoidal, and Incoherent Silver Gratings,” J. Appl. Phys. 75, 1577-1581 (1994). [97]H. A. Haus, Waves and fields in optoelectronics, central book company, Taipei, Taiwan, (1985). [98]S. Kawata, “Near-Field Microscope Probes Utilizing Surface Plasmon Polaritons,” Topics Appl. Phys. 81, 15-27 (2001). [99]D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” 35, 2660-2666 (1987). [100]H. Kano and S. Kawata, “Grating coupled surface Plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. 34, 331-335 (1995). [101]D. W. Unfricht1, S. L. Colpitts1, S. M. Fernandez2 and M. A. Lynes, “Grating-coupled surface plasmon resonance: A cell and protein microarray platform,” Proteomics 5, 4432-4442 (2005). [102]G. -B. Jin, D. W. Unfricht, S. M. Fernandez, M. A. Lynes, “Cytometry on a chip Cellular phenotypic and functional analysis using grating-coupled surface plasmon resonance,” Biosensors and Bioelectronics 22, 200-206 (2006). [103]M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Z. Bor, M. Pietralla, O. Marti, ”Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Organic Electronics 8, 148-160 (2007). [104]N. -F. Chiu, S. -Y. Nien, C. Yu, J. -H. Lee, C. -W. Lin, “Advanced Metal Nanostructure Design for Surface Plasmon Photonic Bandgap Biosensor Device,” Proceedings of IEEE 28th EMBS, New York, Sep. 1-3, (2006). [105]C. -W. Lin, N. -F. Chiu, J. -G. Huang, C. -K. Lee, “Toward integrated Plasmonics for biosensing”, 5th International Conference on Nanochannels, Microchannels and Minichannels, Proceedings of ASME ICNMM 2007 (Invited Paper), Puebla, Mexico, June 18-20, (2007). [106]A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Azimuth-angle-dependent reflectivity data from metallic gratings,” J. of modern optics 45, 1019-1028 (1998). [107]K. Nagata, H. Handa, Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE, Springer-Verlag, Tokyo, (2000). [108]C. Rhodes and S. Franzen, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006). [109]C. -W. Lin, K. -P. Chen, S. -M. Lin, C. -K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B: Chem. 113, 169-176 (2006). [110]C. -W. Lin, K. -P. Chen, M. -C. Su, T. -C. Hsiao, S. -S. Lee, S. -M. Lin, X. -J Shi, C. -K. Lee, “Admittance loci design method for multilayer surface plasmon resonance devices,” Sens. Actuators B: Chem. 117, 219-229 (2006). [111]C. -W. Lin, K. -P. Chen, M. -C. Su, C. -K. Lee, C. -C. Yang, “Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine,” Opt. Quantum Electron 37, 1423-1437 (2005). [112]A. V. Mel’nichuk, L. Y. Mel’nichuk, and Y. A. Pasechnik, “Surface plasmon-phonon polaritons of hexagnal zinc oxide,” Tech. Phys. 43, 52-55 (1998). [113]A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett. 90, 231106 (2007). [114]C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005). [115]H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Exp. 14, 2372-2379 (2006). [116]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, “A comprehensive review of ZnO materials ad devices,” J. Appl. Phys. 98, 041301 (2005). [117]X. Wang, C. J. Summers, and Z. L. Wang, “Self-attraction among aligned Au/ZnO nanorods under electron beam,” Appl. Phys. Lett. 86, 013111 (2005). [118]A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005). [119]F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, “Nature of native defects in ZnO,” Phys. Revi. Lett. 99, 085502 (2007). [120]A. Goldenblum, V. Teodorescu, F. E. Wagner, R. Manaila, G. Filoti, J. P. Deville, D. Pantelica, F. Negoita, A. Belu-marian, N. Scantee, “Structral properties of sputtered ZnO:Au films,” Philos. mag. A 82, 193-204 (2002). [121]W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids 58, 853-857 (1997). [122]S. C. Kitson, W. L. Barnes, and J. R. Samblesc, “Surface Plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441-11445 (1995). [123]S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Optics Comm. 122, 147-154 (1996). [124]S. C. Kittson, W. L. Barnes, J. R. Sambles and N. P. K. Cotter, “Excitation of molecular fluorescence via surface plasmon polaritons,” J. of modern optics 43, 573-582 (1996). [125]R. M. Amos, and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59, 7708-7714 (1999). [126]P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of Surface Plasmons in Organic Light-Emitting Diodes,” IEEE J. Sel. Top. Quant. Electron. 8, 378-386 (2002). [127]P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393-1396 (2002). [128]S. Wedge, J. A. E. Wasey, I. Sage, W. L. Barnes, “Surface plasmon mediated emission from organic materials,” Proc. of SPIE 4642, 79-87 (2002). [129]W. L. Barnes and S. Wedge, “Surface plasmon polariton mediated emission of light,” Proc. of SPIE 5450, 412-415 (2004). [130]S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004). [131]W. L. Barnes, “Light-emitting devices Turning the tables on surface plasmons,” Nat. Mater. 3, 588-589 (2004). [132]I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004). [133]S. Wedge, J. A. E. Wasey, and W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182-184 (2004). [134]J. Bellessa, C. Bonnand, and J. C. Plenet and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93, 306404 (2004). [135]S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opti. Exp. 12, 3673-3685 (2004). [136]S. Wedge, S. H. Garrett, I. Sage and W. L. Barnes, “Photoluminescence emission through thin metal films via coupled surface plasmon-polaritons,” Journal of Modern Optics 52, 833-843 (2005). [137]A. Giannattasio, S. Wedge, L. H. Smith and W. L. Barnes, “The emission of light through thin metal films via surface plasmon polaritons,” Proc. of SPIE 5840, 353-358 (2005). [138]C. J. Yates and I. D. W. Samuel, P. L. Burn, S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105 (2006). [139]G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006). [140]S. Wedge, A. Giannattasio, W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Organic Electronics 8, 136-147(2007). [141]J. R. Lakowicz, “Principles of fluorescence spectroscopy,” second edition, Kluwer Academic/ Plenum Publishers, New York (1999). [142]J. R. Lakowicz, “Radiative Decay Engineering: Biophysical and Biomedical Applications,” Anal. Biochem. 298, 1-24 (2001). [143]C. D. Geddes, and J. R. Lakowicz, “Metal-enhanced florescence,” J. Fluorescence 12, 121-129 (2002). [144]M. G. Weber, and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510-2513 (1985). [145]M. G. Weber, and D. L. Mills, “Determination of surface-polariton minigaps on grating structures- A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B 34, 2893-2894 (1986). [146]J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic crystals, molding the flow of light,” (Princeton University Press, Princeton, NJ, 1995). [147]T. -C. Chiang, T. Miller, and W. E. McMahon, ”Ag-Au superlattice band structure,” Phys. Rev. B 50, 11102-11106 (1994). [148]G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427(2003). [149]N. -F. Chiu, J. -H. Lee, C. -H. Kuan, K. -C. Wu, C. -K. Lee, C. -W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007). [150]N. -F. Chiu, S. -Y. Nien, J. -H. Lee, C. -H. Kuan, K. -C. Wu, C. -K. Lee, C. -W. Lin, “Enhancement and Tunability of Active Plasmonic by Multilayer Grating Coupled Emission,” Opt. Express 15, 11608 (2007). [151]N. -F. Chiu, S. -Y. Nien, L. -C. Chien, J. -H. Lee, C. -H. Kuan, C. -W. Kin, “Enhanced luminescence of organic/metal nanostructure with symmetric dielectric layers for long-range surface Plasmon polaritons,” Proc. of SPIE 6323, 63231V (2006). [152]N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11, 682-687 (2003). [153]R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Revi. Lett. 30, 2838-2841 (1986). [154]D. K. Gifford, D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315-4317 (2002). [155]S. Wedge, W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004). [156]J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90, 081106 (2007). [157]J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface Plasmon-coupled emission: a new method for high sensitivity detection.” Biochem. Biophys. Res. Commun. 307, 435-439 (2003). [158]I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission.” Anal. Biochem. 324, 170-182 (2004). [159]T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami and T. akamatsu, “Emission light properties from Adrhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mat. Res. Soc. Symp. 660, 1-6 (2001). [160]K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato and F. Kaneko, “Surface plasmon emission light property due to molecular luminescence and molecular interaction,” J. J. Appl. Phys. 44, 599-603 (2005). [161]G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006). [162]J. Enderlein, and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection.” Opt. Express 13, 8855-8865 (2005). [163]S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147-154 (1996). [164]J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30-32 (2003). [165]Y. -J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings.” Opt. Express 14, 10825-10830 (2006). [166]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232 (2003). [167]I. Pockrand and A. Brillante, “Nonradiative decay of excited molecles near a metal surface.” Chem. Phys. Lett. 69, 499-504 (1980). [168]J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Readiative decay engineering 2: effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer.” Anal. Biochem. 301, 261-277 (2002). [169]D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
|