跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周銘鐘
研究生(外文):Ming-Chung Chou
論文名稱:以螺旋槳式造影加速Q球擴散影像的擷取
論文名稱(外文):Q-Ball Imaging with PROPELLER Acceleration
指導教授:鍾孝文
指導教授(外文):Hsiao-Wen Chung
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:Q球擴散影像螺旋槳式造影平行造影
外文關鍵詞:Q-Ball ImagingPROPELLERParallel Imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:擴散造影技術已經廣泛地應用在活體的纖維結構偵測上,由於纖維交叉的問題,愈來愈多研究傾向於使用高角度解析擴散影像技術(HARDI)來解決這個問題,然而因為高角度擴散影像技術需要更多角度的擴散影像,因此掃描時間則會非常的長,有鑑於此,如何解決掃描時間則會是一個重要的課題。螺旋槳造影技術已被證明可以解決回訊平面影像的扭曲問題,但時間反而會增加,螺旋槳技術的資料互享觀念被提出之後,則可能可以同時解決掃描時間以及影像扭曲兩個問題,因此這個研究的目的便是應用螺旋槳技術的資料互享技術來加速Q球影像的造影。材料與方法:為了將螺旋槳造影技術應用在Q球造影上,252個方向的擴散影像,根據鄰近的擴散方向,分成14組,每組含有18個擴散方向,傳統Q球造影以及螺旋槳Q球造影都是在3T磁振造影儀完成,掃描時間可以縮短30%以上。結果:螺旋槳Q球造影的GFA跟ODF的影像扭曲都有降低,而且GFA的影像對比以及ODF中的纖維方向跟傳統Q球造影的結果幾乎一樣,不過影像解析度有相對較低的現象。討論與結論:螺旋槳Q球造影同時解決了掃描時間跟影像扭曲的問題,此外由於螺旋槳Q球造影有內在高訊雜比的優勢,因此結果會更可信。然而螺旋槳的每張影像在局部地方存有剩餘的擴散扭曲,若使用額外的影像對位方式,相信螺旋槳Q球造影的影像品質會更可信。
Background and purpose: Diffusion imaging techniques have been widely used to study fiber structure in vivo. Recently, more and more studies tend to using high angular resolution diffusion imaging (HARDI) techniques to solve fiber crossing problems. However, the scan time of HARDI technique is proportional to the number of diffusion directions being used in acquisition. Search for a technique suitable of accelerating data acquisition becomes an important issue. Propeller EPI has been demonstrated to be capable of reducing susceptibility distortion in EPI, especially in conjunction with parallel imaging, but this technique requires longer scan time to obtain single image. After data-sharing concept of propeller reconstruction was introduced, the image acceleration in EPI acquisition becomes possible. Therefore, the purpose of this study is to investigate the feasibility of accelerating q-ball imaging by propeller acquisition. Material and methods: In this study, q-ball imaging was selected for acceleration because it is a model-free technique and takes shorter scan time to achieve high angular resolution in q-space. To implement propeller imaging on q-ball imaging, the 252 icosahedral diffusion directions were separated into 14 groups, each consists of 18 diffusion directions, according to their diffusion directions with close distance. The data acquisition of conventional QBI and propeller QBI were conducted in a 3T MR scanner (Philips Achieva, Best, Netherlands). Scan time of propeller QBI was reduced more than 30% by using propeller and parallel imaging. Results: The resultant GFA and ODF of conventional QBI and propeller QBI were compared slice-by-slice. In propeller QBI, the susceptibility distortion was reduced both in GFA and ODF maps. Besides, propeller QBI shows almost same GFA contrast and fiber orientations, but appears relative low image resolution which may due to keyhole reconstruction in propeller. Discussion and conclusions: Propeller imaging technique helps reduce susceptibility distortion and scan time in q-ball imaging. Besides, propeller QBI has inherent higher SNR in each blade DWI, and therefore it has more reliable results. However, there remains residual local distortion among all of blade DWIs, thus, further distortion correction was suggested to achieve better image quality of propeller QBI. This study utilized propeller imaging to reduce the scan time of q-ball imaging. The results suggested that propeller QBI could be a suitable technique in clinical applications.
Chapter 1 Introduction
1.1 Background---1
1.2 Motivation---2
1.3 Outline--3
1.4 References---4

Chapter 2 Diffusion MRI
2.1 NMR diffusion signal---7
2.2 Diffusion-weighted image---12
2.3 Diffusion tensor imaging---14
2.4 High angular resolution diffusion imaging---21
2.5 Problems of using HARDI in clinical applications---27
2.6 References---28

Chapter 3 Techniques in Accelerating Diffusion Acquisition
3.1 Echo-planar imaging---30
3.2 Parallel imaging in EPI acquisition---32
3.3 PROPELLER with EPI readout---35
3.4 Data-sharing PROPELLER---38
3.5 References---41

Chapter 4 Q-ball Iimaging with PROPELLER Acceleration
4.1 Background and purpose---42
4.2 Materials and methods---44
4.2.1 Q-ball imaging acquisition---44
4.2.2 Propeller q-ball imaging acquisition---44
4.2.3 T2 image acquisition---45
4.2.4 Q-ball reconstruction---45
4.2.5 Propeller q-ball imaging---46
4.2.6 ODF comparisons---49
4.3 Results---50
4.3.1 Propeller b0 image with affine registration---50
4.3.2 Propeller keyhole DWI---53
4.3.3 GFA maps---55
4.3.4 ODF maps---57
4.3.5 ODF comparisons---64
4.4 References---66

Chapter 5 Discussion and Conclusions
5.1 GFA and ODF comparisons---67
5.2 Image resolution comparison---68
5.3 Scan time comparison---70
5.4 Distortion comparison---72
5.5 SNR comparison---73
5.6 Reconstruction issue---73
5.7 Conclusions---74
5.8 References---75

Appendix A Notations---76
Appendix B Abbreviations---77
1. Moseley ME, Decrespigny AJS, Roberts TPL, Kozniewska E, Kucharczyk J. Early Detection of Regional Cerebral-Ischemia Using High-Speed Mri. Stroke 1993; 24:I60-I65.
2. Moseley ME, Kucharczyk J, Mintorovitch J, et al. Diffusion-Weighted Mr Imaging of Acute Stroke - Correlation with T2-Weighted and Magnetic Susceptibility-Enhanced Mr Imaging in Cats. American Journal of Neuroradiology 1990; 11:423-429.
3. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic Diffusion in Human White Matter - Demonstration with Mr Techniques Invivo. Radiology 1990; 177:401-405.
4. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-Weighted Mr Imaging of Anisotropic Water Diffusion in Cat Central-Nervous-System. Radiology 1990; 176:439-445.
5. Sotak CH, Li LM. Mr Imaging of Anisotropic and Restricted Diffusion by Simultaneous Use of Spin and Stimulated Echoes. Magnetic Resonance in Medicine 1992; 26:174-183.
6. Basser PJ, Mattiello J, Lebihan D. Mr Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal 1994; 66:259-267.
7. Mattiello J, Basser PJ, LeBihan D. The b matrix in diffusion tensor echo-planar imaging. Magnetic Resonance in Medicine 1997; 37:292-300.
8. Counsell SJ, Larkman DJ, Kapellou O, et al. High b value diffusion tensor imaging of the neonatal brain at 3 Tesla. Pediatric Research 2004; 55:423a-423a.
9. Gullmar D, Haueisen J, Reichenbach JR. Analysis of b-value calculations in diffusion weighted and diffusion tensor imaging. Concepts in Magnetic Resonance Part A 2005; 25A:53-66.
10. Yoshikawa T, Aoki S, Masutani Y, Abe O, Mori H, Ohtomo K. Diffusion tensor imaging of cerebral infarction: Analysis of ADC and DTI scalar metrics (fractional anisotropy and eigenvalues). Radiology 2002; 225:278-279.
11. Zhang S, Laidlaw D. A model for some subcortical DTI planar and linear anisotropy. Medical Image Computing and Computer-Assisted Intervention - Miccai 2004, Pt 2, Proceedings 2004; 3217:1071-1073.
12. Bonny JM, Renou JP. Euclidian distance-weighted smoothing for quantitative MRI: application to intervoxel anisotropy index mapping with DTI. Journal of Magnetic Resonance 2002; 159:183-189.
13. Huppi PS, Maier SE, Peled S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatric Research 1998; 44:584-590.
14. Lim KO, Hedehus M, de Crespigny A, Menon V, Moseley M. Diffusion tensor imaging of white matter tracts in schizophrenia. Biological Psychiatry 1998; 43:11s-12s.
15. McKinstry RC, Shimony JS, Aronovitz JA, Akbudak E, Snyder AZ, Conturo TE. Anatomical findings in diffusion tensor imaging of the normal brain. Radiology 1997; 205:1465-1465.
16. Neil JJ, McKinstry RC, Shiran SI, Snyder AZ, Conturo TE. Timing of changes on diffusion tensor imaging following brain injury in full-term infants. Annals of Neurology 1998; 44:551-552.
17. Neil JJ, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: Apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998; 209:57-66.
18. Werring DJ, Clark CA, Barker GJ, et al. The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule. Journal of Neurology Neurosurgery and Psychiatry 1998; 65:863-869.
19. Mori S, Crain BJ, Chacko VP, van Zijl PCM. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 1999; 45:265-269.
20. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 2000; 44:625-632.
21. Terajima K, Nakada T. EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. Journal of Neuroscience Methods 2002; 116:147-155.
22. Anderson AW. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2005; 54:1194-1206.
23. Ozarslan E, Mareci TH. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2003; 50:955-965.
24. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 2002; 48:577-582.
25. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine 1997; 38:591-603.
26. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 1999; 42:952-962.
27. Preibisch C, Pilatus U, Bunke R, Hoogenraad F, Zanella F, Lanfermann H. Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI). Neuroimage 2003; 19:412-421.
28. de Zwart JA, van Gelderen P, Kellman P, Duyn JH. Reduction of gradient acoustic noise in MRI using SENSE-EPI. Neuroimage 2002; 16:1151-1155.
29. Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magnetic Resonance in Medicine 2002; 48:128-136.
30. Bammer R, Keeling SL, Augustin M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using Sensitivity Encoding (SENSE). Magnetic Resonance in Medicine 2001; 46:548-554.
31. Chuang T-C. Data-sharing PROPELLER imaging for increased temporal resolution retaining spatial resolution and image contrast. Proceedings of International Society of Magnetic Resonance in Medicine 2006:2954.
32. Tuch DS. Q-Ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-1372.
33. Tanner JE. Pulsed Field Gradients for Nmr Spin-Echo Diffusion Measurements. Review of Scientific Instruments 1965; 36:1086-&.
34. Stejskal EO, Tanner JE. Spin Diffusion Measurements - Spin Echoes in Presence of a Time-Dependent Field Gradient. Journal of Chemical Physics 1965; 42:288-&.
35. Basser PJ, Mattiello J, Lebihan D. Mr Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal 1994; 66:259-267.
35. Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS. A geometric analysis of diffusion tensor measurements of the human brain. Magnetic Resonance in Medicine 2000; 44:283-291.
36. Westin CF, Maier SE, Khidhir B, Everett P, Jolesz FA, Kikinis R. Image processing for diffusion tensor magnetic resonance imaging. Medical Image Computing and Computer-Assisted Intervention, Miccai''99, Proceedings 1999; 1679:441-452.
37. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 2000; 44:625-632.
38. Mori S, Crain BJ, Chacko VP, van Zijl PCM. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 1999; 45:265-269.
39. Terajima K, Nakada T. EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. Journal of Neuroscience Methods 2002; 116:147-155.
40. Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography using diffusion tensor deflection. Human Brain Mapping 2003; 18:306-321.
41. Chou MC, Wu ML, Chen CY, et al. Tensor deflection (TEND) tractography with adaptive subvoxel stepping. Journal of Magnetic Resonance Imaging 2006; 24:451-458.
42. Inati S, Farid H, Sherwin KF, Grafton ST. A global probabilistic approach to fiber tractography with diffusion tensor MRI. Neuroimage 2001; 13:S160-S160.
43. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magnetic Resonance in Medicine 2006; 56:395-410.
44. Hosey T, Williams G, Ansorge R. Inference of multiple fiber orientations in high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2005; 54:1480-1489.
45. Anderson AW. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2005; 54:1194-1206.
46. Ozarslan E, Mareci TH. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2003; 50:955-965.
47. Hirsch JG, Schwenk SM, Rossmanith C, Hennerici MG, Gass A. Deviations from the diffusion tensor model as revealed by contour plot visualization using high angular resolution diffusion-weighted imaging (HARDI). Magnetic Resonance Materials in Physics Biology and Medicine 2003; 16:93-102.
48. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 2002; 48:577-582.
49. Liu CL, Bammer R, Moseley ME. Generalized diffusion tensor imaging (GDTI): A method for characterizing and imaging diffusion anisotropy caused by non-Gaussian diffusion. Israel Journal of Chemistry 2003; 43:145-154.
50. Zhan W, Stein EA, Yang YH. A rotation-invariant spherical harmonic decomposition method for mapping intravoxel multiple fiber structures. Neuroimage 2006; 29:1212-1223.
51. Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine 2005; 54:1377-1386.
52. Tuch DS. Q-Ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-1372.
53. Weber GBAaH-J. Mathematical methods for physicists. Harcourt/Academic Press, New York 2000.
54. Mansfield P. Multi-Planar Image-Formation Using Nmr Spin Echoes. Journal of Physics C-Solid State Physics 1977; 10:L55-L58.
55. Moseley ME, Decrespigny AJS, Roberts TPL, Kozniewska E, Kucharczyk J. Early Detection of Regional Cerebral-Ischemia Using High-Speed Mri. Stroke 1993; 24:I60-I65.
56. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine 1997; 38:591-603.
57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 1999; 42:952-962.
58. de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu RX, Duyn JH. Signal-to-noise ratio and parallel Imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magnetic Resonance in Medicine 2004; 51:22-26.
59. Terajima K, Nakada T. EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. Journal of Neuroscience Methods 2002; 116:147-155.
60. Jaermann T, Crelier G, Pruessmann KP, et al. Sense-Dti at 3 T. Magnetic Resonance in Medicine 2004; 51:230-236.
61. Chou MC, Wang CY, Liu HS, Chung HW, Chen CY. Pseudolesions arising from unfolding artifacts in diffusion imaging with use of parallel acquisition: Origin and remedies. American Journal of Neuroradiology 2007; 28:1099-1101.
62. Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: An MRI technique suitable for diffusion tensor Imaging at high field strength with reduced geometric distortions. Magnetic Resonance in Medicine 2005; 54:1232-1240.
63. Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magnetic Resonance in Medicine 2006; 55:1298-1307.
64. Chuang TC, Huang TY, Lin FH, et al. PROPELLER-EPI with parallel imaging using a circularly symmetric phased-array RF coil at 3.0 T: Application to high-resolution diffusion tensor imaging. Magnetic Resonance in Medicine 2006; 56:1352-1358.
65. Chuang TC, Huang TY, Wang FN, Chung HW, Kwong KK. Data-sharing PROPELLER imaging for increased temporal resolution retaining spatial resolution and image contrast. Proceedings of International Society of Magnetic Resonance in Medicine 2006:2954.
66. Tuch DS. Q-Ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-1372.
67. Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magnetic Resonance in Medicine 2006; 55:1298-1307.
68. Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: An MRI technique suitable for diffusion tensor Imaging at high field strength with reduced geometric distortions. Magnetic Resonance in Medicine 2005; 54:1232-1240.
69. Xu DR, Mori S, Shen DG, van Zijl PCM, Davatzikos C. Spatial normalization of diffusion tensor fields. Magnetic Resonance in Medicine 2003; 50:175-182.
70. Susumu Mori SW, Lindia M. Nagae-poetscher, Peter C.M. Van Zijl. MRI Atlas of Human White Matter. ELSEVIER 2005.
71. Jones RA, Haraldseth O, Muller TB, Rinck PA, Oksendal AN. K-Space Substitution - a Novel Dynamic Imaging Technique. Magnetic Resonance in Medicine 1993; 29:830-834.
72. Vanvaals JJ, Brummer ME, Dixon WT, et al. Keyhole Method for Accelerating Imaging of Contrast Agent Uptake. Jmri-Journal of Magnetic Resonance Imaging 1993; 3:671-675.
73. Lin CP, Wedeen VJ, Chen JH, Yao C, Tseng WYI. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage 2003; 19:482-495.
74. Weisskoff R, TL D. Correcting gross distortion on echo planar images. Proceedings of the SMRM 11th Annual Meeting, Berlin 1992:4515.
75. Chang H, Fitzpatrick JM. A Technique for Accurate Magnetic-Resonance-Imaging in the Presence of Field Inhomogeneities. Ieee Transactions on Medical Imaging 1992; 11:319-329.
76. Skare S, Andersson J, Bammer R. Calibration free distortion correction for propeller EPI. Proceedings of the ISMRM 16th Annual Meeting, Canada 2008:417.
77. Chuang TC. PROPELLER keeps spinning: Advanced technique development and applications of PROPELLER MRI. Thesis 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top