跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巢國山
研究生(外文):Guo-Shan Chao
論文名稱:利用一個脈衝波的有限差分時域法來模擬寬波長範圍的細胞散射光
論文名稱(外文):Using A Pulsed Finite-Difference Time-Domain Method to Simulate Light Scattering from Cells Over Broad Wavelength Ranges
指導教授:宋孔彬
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:有限差分時域法逆散射光譜細胞結構折射率變化量
外文關鍵詞:Finite Difference Time DomainBackscatteringCell StructureRefraction Index VariationMie theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
逆散射光譜對於細胞結構與折射率的變化非常的敏感,因此,若能建立一套模擬工具,將逆散射光譜與細胞結構以及折射率變化量之間的關係量化,將有機會實現上皮細胞非侵入式癌症檢測。
本論文主要是利用有限差分時域(FDTD)法來建立模擬工具,並加入高斯脈衝波,以達到模擬寬波長範圍的散射光,FDTD是一套彈性且實用的數值方法來解Maxwell’s equation,其適用於任意形狀與電介質的物體。可藉由調整細胞模擬參數來觀察逆散射光譜的變化,藉此找出逆散射光譜與細胞結構以及折射率變化之間的關係。
利用Mie theory來驗證在均質圓球條件下的模擬結果,並且討論不同空間取樣率對於模擬結果準確度、消耗時間與記憶體使用量的影響。最後模擬數個不同條件的細胞核散射光譜,觀察其逆散射光譜的變化,確實會受到細胞核結構與折射率變化量的影響。
Backscattering is very sensitive to structure and refraction index variation of cell. Hence, if I can build a simulation tool to find relationship between backscattering and structure and refraction index variation of cell, and then, it would be potential to achieve non-invasive epithelium cancer diagnosis.
In this thesis, I use finite difference time domain (FDTD) method to build simulation tool, and use Gaussian pulsed for achieving simulation light scattering over broad wavelength ranges. FDTD is a flexible and powerful method to solve Maxwell’s equation. FDTD is suitable for dielectric objects of arbitrary shape. By change the simulation parameter of cell to observe backscattering, and investigate the relationship between backscattering and structure and refraction index variation of cell.
To verify FDTD simulation result of uniform sphere by Mie theory, and discuss the influence of special sampling on accuracy, elapsed time and memory size. At last, I simulate several different nuclei, and observe the influence of structure and refraction index variation of cell on backscattering. The backscattering is certainly influenced by structure and refraction index variation of cell.
口試委員會審定書…………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要…………………………………………………………… iii
英文摘要…………………………………………………………… iv
第一章 簡介………………………………………………………… 1
1-1 研究動機…………………………………………………… 1
1-2 研究目標…………………………………………………… 4
第二章 研究方法…………………………………………………… 5
2-1 The Yee Algorithm………………………………………… 5
2-2 Total Field/Scattered Field Formulation………… 11
2-3 Light Source……………………………………………… 12
2-4 PML Boundary Condition………………………………… 14
2-5 Near-to-Far-Field Transform………………………… 22
第三章 程式驗證與分析………………………………………… 26
3-1 Comparisons with Mie Theory………………………… 26
3-2 BroadBand Result………………………………………… 31
3-3 Analysis of different grid spacing………………… 33
第四章 微米圓球的散射光譜……………………………………… 37
4-1 簡介與實驗方法…………………………………………… 37
4-2 實驗結果…………………………………………………… 39
4-3 與模擬結果比較…………………………………………… 41
第五章 細胞核散射光譜…………………………………………… 43
第六章 討論………………………………………………………… 48
第六章 結論與未來工作…………………………………………… 53
參考文獻……………………………………………………………… 54
1.Tao T. Wu and Jianan Y. Qu, “Assessment of the relative contribution of cellular components to the acetowhitening effect in cell cultures and suspensions using elastic light-scattering spectroscopy”, APPLIED OPTICS 46 : 4834 2007
2.Rebekah Drezek, Andrew Dunn, and Rebekah Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements”, APPLIED OPTICS Vol. 38, No. 16 (1999).
3.Z. Ge, K. Schomacker, and N. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques”, Appl. Spectrosc. 52, 833-839 (1998).
4.J. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms”, Appl. Opt. 36, 949-957 (1997).
5.Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics”, APPLIED OPTICS, Vol. 37, No. 16, 1998
6.J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status”, Journal of Biomedical Optics 5(2), 131–137 (2000)
7.L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution”, Opt. Lett. 80, 627-630.
8.V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ”, IEEE J. Sel. Topics Quantum Electron. 5, (1999).
9.R. Drezek, A. Dunn and R. Richards-Kortum, “A Pulsed Finite-Difference Time-Domain (FDTD) Method for Calculating Light Scattering from Biological Cells Over Broad Wavelength Ranges”, Optics Express 6, 147-157 (2000).
10.K. YEE, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”, IEEE Transactions on Antennas and Propagation, vol. 14, issue 3, pp. 302-307 (1966).
11.Taflove, A., “Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method”, Artech House, 2005.
12.J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, J. Computational Physics, Volume 114, Issue 2, October 1994, Pages 185-200
13.Xiaoyan Ma1, Jun Q Lu1, R Scott Brock1, Kenneth M Jacobs1,Ping Yang2 and Xin-Hua Hu1, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm”, Phys. Med. Biol. 48 (2003) 4165–4172
14.Arifler D, Guillaud M, Carraro A, Malpica A, Follen M, Richards-Kortum R, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition”, Journal of Biomedical Optics 8(3), 484–494 (2003)
15.Xu Li, Allen Taflove, and Vadim Backman, “Modified FDTD Near-to-Far-Field Transformation for Improved Backscattering Calculation of Strongly Forward-Scattering Objects”, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 4, 2005
16.Kuniyuki Motojima and Shogo Kozaki, “A HYBRID TECHNIQUE COMBINING FDTD AND SERIES SOLUTION FOR NEAR-TO-FAR-FIELD TRANSFORMATION”, International Journal of Infrared and Millimeter Waves, Vol. 23, No. 1, 2002
17.Wonshik Choi, Christopher Fang-Yen, Kamran Badizadegan, Seungeun Oh, Niyom Lue, Ramachandra R Dasari & Michael S Feld, “Tomographic phase microscopy”, Nature Methods, VOL.4, NO.9, 717 - 719 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top