跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴宇弘
研究生(外文):Yu-Hung Dai
論文名稱:聚亞醯胺絕緣層上薄膜鍺光電元件及其可撓性分析
論文名稱(外文):Thin Film Germanium-on-Polyimide Optoelectronic Devices and Flexibility Analysis
指導教授:劉致為
指導教授(外文):Chee Wee Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:84
中文關鍵詞:薄膜鍺金氧半元件聚亞醯胺可撓式光偵測器光生伏打電池場效電晶體
外文關鍵詞:thin film Ge MOS devicepolyimideflexible photodetectorphotovoltaic cellpMOSFETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們研究且發展出薄膜鍺金氧半元件之結構。利用聰明切的技術將它轉移至聚亞醯胺軟性基板上,並且對此一型態之元件性能做出各項探討及分析。為了瞭解薄膜鍺金氧半結構於軟性電子元件之發展及應用,我們已將此結構應用於可撓式光偵測器、光生伏打電池及場效電晶體等三種重要的半導體元件上。
此外,我們建構了一種外加應變的裝置,對此元件施加單軸之伸展應變,使得薄膜鍺的能隙急遽變小,進而利用拉曼頻譜的紅位移得到應變量,並且觀察施加應變下對其光響應的影響。從此可發現到1.5微米的紅外光波段對鍺的能隙變小時會有相當大的提升,這現象驗證了鍺之光學吸收係數的特性曲線。甚至可利用溫度的改變,對此偵測器做出適當之應用。
最後,再由商業套裝軟體ANSYS模擬光偵測元件結構受到機械應變時的特性變化,進而瞭解薄膜鍺受到外加應力的情形。另外希望能將此元件的製程技術應用於薄膜矽上,加以降低鍺通道場效電晶體的製程成本,以符合現今軟性電子的需求及半導體科技之整合。
In this thesis, we have demonstrated thin film Ge MOS devices on flexible substrate as polyimide using the technique of Smart-CutTM. Furthermore, we also analysis and study various properties of this type device. In order to realize the applications of thin film Ge MOS structure of flexible electronics, we have developed flexible photodetector, photovoltaic cell, and pMOSFETs.
Moreover, new mechanic setup is constructed to apply external mechanical uniaxial tensile strain. The strain leads bandgap shrinkage. The red-shift of Raman spectroscopy can be used to extract strain. The relation between responsivity enhancements versus strain is discussed, and this phenomenon verifies the characteristic curve of optical absorption coefficient of Ge. Otherwise, we can be utilized the temperature variation to perform the GOP MOS detectors for sensing application.
Finally, we utilize ANSYS to simulate GOP photodetector with mechanical uniaxial tensile strain. Furthermore, we also hope this process can be used on Silicon-on-Polyimide substrate to reduce the cost of GOP pMOSFETs that will be more conformed to current semiconductor industry.
Contents

List of Tables V
List of Figures VI

Chapter 1 Introduction
1.1 Background and Motivation 1
1.2 Organization 4
References 6

Chapter 2 Fabrication of Ge-on-Polyimide MOS Devices
2.1 Introduction 7
2.2 GOP Photodetector 8
2.2.1 Low Temperature Wafer Bonding Using SU-8 2100 Photo-resist 8
2.2.2 Device Layer Structure Analysis 14
2.2.3 Current Reduction by Metal Gate and Device Fabrication 17
2.3 GOP Dispensing Indium Tin Oxide Photovoltaic Cell 20
2.3.1 Low Temperature Wafer Bonding Dispensing Indium Tin Oxide 20
2.3.2 Device Layer Structure Analysis 23
2.3.3 Device Fabrication 25
2.4 GOP Schottky-barrier pMOSFETs 26
2.4.1 The TEM and Surface Roughness Analysis 26
2.4.2 One Mask Process Flow 29
2.4.3 Oxide Formation and Lithography 31
2.4.4 Gate Metal Deposition and Lift-off 35
2.4.5 Oxide Etching 37
2.4.6 Source/Drain Metal Deposition 38
2.5 Conclusion 39
References 39

Chapter 3 Performance of Ge-on-Polyimide MOS Devices
3.1 Introduction 41
3.2 Responsivity of GOP Photodetector 41
3.2.1 The Reflective Measurement and Results 41
3.2.2 The Physical Meaning 48
3.3 Conversion Efficiency η of GOP Dispensing ITO Photovoltaic Cell 52
3.4 I-V Characteristics of GOP Schottky-barrier pMOSFETs 56
3.5 Conclusion 61
References 62

Chapter 4 Flexibility Analysis
4.1 Introduction 63
4.2 Experiment Procedure and Strain-induced Effects 63
4.2.1 Experiment Installation of The Bending GOP Structure63
4.2.2 Strain-induced Raman Spectroscopy65
4.2.3 Strained GOP Photodetector 67
4.2.4 Temperature Sensing Application73
4.3 Mechanical Bending Structure Simulation Analysis with ANSYS 75
4.4 Conclusion 77
References 78

Chapter 5 Summary and Future Work
5.1 Summary 79
5.2 Suggestions for Future Work 81
References 84
Chapter 1
[1]C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[2]Sebastian M. Csutak, Jeremy D. Schaub, Wei E. Wu, Rob Shimer, and Joe C. Campbell, IEEE J. Quantum Electron. 38, 193 (2002).
[3]Frank Fournel, Hubert Moriceau, Bernard Aspar, Karine Rousseau, Joel Eymery, Jean-Luc Rouviere, and Noel Magnea, Appl. Phys. Lett., vol. 80, no. 5,
pp. 793-795, Feb. (2002).
[4]Stephen W. Bedell, and William A. Lanford, J. Appl. Phys., vol. 90, no. 3,
pp. 1138-1146, Aug. (2001).
[5]2007 International Technology Roadmap of Semiconductors (ITRS)
[6]N. Wu, Q. C. Zhang, C. X. Zhu, C. C. Yeo, S. J. Whang, D. S. H. Chan, M. F. Li, B. J. Cho, A. Chin, and D.-L. Kwong, “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3741-3743, 2004.

Chapter 2
[1]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, IEEE Photon. Technol. Lett. 16, 2547 (2004).
[2]B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, IEEE Electron Device Lett., vol. 24, no. 5, pp. 318-320, May 2003.
[3]B.-C. Hsu, W.-C. Hua, C.-R. Shie, C.-C. Lai, K.-F. Chen and C. W. Liu, in Proc. Meeting of Electrochemical Society, Philadelphia, PA, 2002, p. 662.
[4]Q.-Y. Tong, et al., Appl. Phys. Lett., Vol. 70,1390 (1997).
[5]Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding (Wiley, New York, 1999).
[6]Daniel Lasaosa, Jin-Wei Shi, Donato Pasquariello, Kian-Giap Gan, Ming-Chun Tien, Hsu-Hao Chang, Shi-Wei Chu, Chi-Kuang Sun, and John E. Bowers, IEEE J. Select. topics in quantum electron., vol.10, no. 4, pp. 728-741, Jul. 2004.
[7]L. Guerin, The SU-8 Homepage, http://www.geocities.com/guerinlj/.
[8]F. Sugimoto, and Y. Arimoto, Proceedings of 1992 International Symposium on Power Semiconductor Devices & ICs, Tokyo, pp. 240-241.
[9]Qin-Yi Tong, Giho Cha, Roman Gafiteanu, and Ulrich Gösele, Journal of Microelectromechanical Systems, Vol. 3, No. 1, 1994.
[10]James M. Zahler, Chang-Geun Ahn, Shahrooz Zaghi, Harry A. A twater, Charles Chu, Peter Iles, “Ge layer transfer to Si for photovoltaic applications”, Thin Solid Films 403-404 (2002), pp.558-562.
[11]Chi On Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002.

Chapter 3
[1]S. M. Sze and J. C. Irvin, “Resitivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K,” Solid State Electron., vol. 11, pp. 599-602, 1968.
[2]L. Colace, G. Masini, and G. Assanto, “Ge-on-Si Approaches to the Detection of Near-Infrared Light”, IEEE J. Quantum Electron, vol. 35, no.12, pp. 1843-1852, Dec. 1999.
[3]Steven J. Koester, Jeremy D. Schaub, Gabriel Dehlinger, and Jack O. Chu, “Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications”, IEEE J. Sel. Top. Quantum Electron, vol. 12, no. 6, pp.1489-1502, Nov. 2006.
[4]W. S. Ho, Y.-H. Dai, Y. Deng, C.-H. Lin, and C. W. Liu, “Flexible Ge-on-Polyimide Photodetector”, 4th International SiGe Technology and
Device Meeting (ISTDM), HsinChu Taiwan, 2008.
[5]M. B. Princes, “Silicon Solar Energy Converters” J. Appl. Phys.,26,534(1955)
[6]Yaakov Kraftmakher, Bar-Ilan University, Israel, “Photovoltaic cell: efficiency of energy conversion”, Eur. J. Phys. 21 (2000) pp.159-166. Printed in the UK.
[7]Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato and Takao Someya, “Bending Effect of Organic Field-Effect Transistors with Polyimide Gate Dielectric Layers”, Japanese Journal of Applied Physics, vol. 44, no. 4B, pp.2841-2843.

Chapter 4
[1]Y. Hida, T. Tamagawa, H. Ueba, and C. Tatsuyama, J. Appl. Phys., vol. 67, pp. 7274-7277, 1990.
[2]M. H. Liao, P.-S. Kuo, S.-R. Jan, S.-T. Chang, C. W. Liu,
“Strained Pt Schottky diodes on n-type Si and Ge,” Appl. Phys. Lett., vol. 88, no. 14, p. 143509, Apr. 2006.
[3]Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. vol. 82, no. 13, pp. 2044-2046, March 2003.
[4]S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices” 3rd ed., pp.664-665.
[5]Jifeng Liu, Xiaochen Sun, Dong Pan, Xiaoxin Wang, Lionel C. Kimerling, Thomas L. Koch, and Jurgen Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si”, Optics Express 11272, vol. 15, No. 18, 3 September 2007.
[6]Y. H. Shih, S. R. Lin, T. M. Wang, and J. G. Hwu, 2004, “High Sensitive and Wide Detecting Range MOS Tunneling Temperature Sensors for On-Chip Temperature Detection”, IEEE Transactions on Electron Decices, vol.51, No.9, September 2004, pp.1514-1521.
[7]Kimberly J. Allen, “Reel to Real:Prospects for Flexible Displays”, Proceedings of the IEEE, vol. 93, No.8, August 2005.

Chapter 5
[1]Sameer M. Venugopal, Student Member, IEEE, and David R. Allee, Member, IEEE, “ Integrated a-Si:H Source Drivers for 4” Electrophoretic Display on Flexible Stainless Steel Substrate ”, Journal of Display Technology, vol. 3,
No. 1, March 2007.
[2]Xiaojia Wang, Sean Kiluk, Chris Chang, and R.C. Liang, “ Microcup® Electronic Paper and the Converting Processes ”, SiPix Imaging Inc., 1075 Montague Expressway, Milpitas, CA 95035, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top