跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉劍輝
研究生(外文):Chien-Hui Liou
論文名稱:大腦功能性影像於靜坐生理調節現象之研究
論文名稱(外文):Brain Functional Mapping on Physiological Regulating Phenomena during Meditation Exercise
指導教授:李嗣涔李嗣涔引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:111
中文關鍵詞:功能性磁振造影血氧準據訊號大腦及神經影像靜坐中國正宗靜坐默運祖炁聽其自然運化
外文關鍵詞:Functional MRI (fMRI)Blood Oxygenation Level Dependent (BOLD) signalBrain and neuroimagingMeditationChinese Original Quiet Sitting (COQS)Invitation of Primordial Qi (IPQ)Allow its Natural Workings (ANW)QiCh’i
相關次數:
  • 被引用被引用:9
  • 點閱點閱:819
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
以不同的方式進行大腦功能的探索無疑是一件有趣而且極有意義的工作,而靜坐正是一項可以提升身體健康的特殊精神操作,然而截至目前為止、其內部的機制或是完整的神經生理解釋仍尚待建立。本研究應用功能性磁振造影(fMRI)技術針對中國正宗靜坐(COQS)進行深入研究,此靜坐法分成兩階段:第一階段為默運祖炁(默念口訣並接收外界炁能,約數分鐘),第二階段為「聽其自然運化」(長時間的靜坐放空,不假絲毫人為意識,聽任內部氣機自然運化),由於此兩階段為完全不同的靜坐操作且各有其意義,因此分別設計實驗進行探討。另外、為了獲得初步的生理資訊,在正式fMRI實驗前先進行四項一般性生理訊號之量測,包括:SAO2 (%), ETCO2 (%), Heart Rate (BPM) 以及 Respiration Rate (BPM),腦電圖(EEG)信號也作了初步量測。

共有十六位受測者參與第一階段的靜坐實驗,大腦數個區域呈現統計性意義(p<0.005)之正向活化反應(positive activation),包括:vACC, declive, middle occipital gyrus, corpora quadrigemina, thalamus, pineal body, fusiform gyrus, hippocampus, superior temporal gyrus, precuneus, precentral gyrus, insula, middle temporal gyrus, culmen 以及 cingulate gyrus。這些大腦區域顯示靜坐與生理調節間之高度相關性,另外、在相同的分析條件下,並沒有任何大腦區域呈現負向活化反應(negative activation)。

另外、共有十七位受測者參與第二階段的靜坐實驗,大腦數個區域呈現統計性意義(p<0.05)之正向及負向活化反應,主要的負向活化反應(negative activation)區域包括:dACC, superior frontal gyrus, caudate body, amygdale 以及 superior temporal gyrus,正向活化反應(negative activation)區域則包括:vACC, declive, culmen, thalamus 以及 hypothalamus。此外、考量靜坐本身之複雜性,其中之反應型態可能隨著受測者生理及心理狀態而呈現時間上之反應區差異,吾人假設靜坐之大腦反應可能呈現時間效應(temporal effect)上之差距,在進行數據分析過程中,亦將第二階段再細分為三個時段觀察其反應區,結果發現各時段中大腦之反應區域隨時間之變化而略有不同。另外再針對下視丘(hypothalamus) 進行時間效應之分析,發現數種不同之BOLD (Blood Oxygenation Level Dependent) 信號形式,此結果初步證實前述之假設,亦即靜坐之大腦反應可能呈現時間效應之差異,暗示由下視丘掌控之內分泌調節或是整體內在之生理調節程序,可能由於受測者不同的生理與心理狀態而在靜坐中不同的時段中進行。

本研究之實驗結果呈現靜坐過程中大腦之反應區域,並顯現出相當之生理調節意義,循此結果並進行更深入的研究,可能建立靜坐改善生理現象之機制以及系統性解釋。另外、吾人在第一階段靜坐實驗中發現松果體呈現活化,唾液之褪黑激素分析當可作為一項間接及定性上之證據,真正導致松果體反應之理由尚需進一步探討。

針對第一階段及第二階段靜坐實驗結果所建立之「大腦反應區與生理意義概要圖」可提供不同靜坐階段中大腦反應區與其中所可能產生生理影響之初步綜覽,該概要圖同時也呈現出靜坐過程中可能產生之生理性調節現象及意義。雖然本研究提出相當有意義之結果,但是受限於研究之技術及專業,有關靜坐生理之更詳細機制及內涵尚須更深入之探討以解開其中之奧秘。
It is interesting and meaningful to explore the brain function in various aspects. Meditation is a special mental operation which might promote body health. As yet, the internal mechanism and complete neurological interpretation still remain to be established. In this study, I chose Chinese Original Quiet Sitting (COQS) to be investigated by fMRI (functional magnetic resonance imaging) technique. Also, as COQS processes two different parts: a short period of silent recitation of religious mantra and mental imagination of receiving spiritual energy (named “Invitation of Primordial Qi”: IPQ), and a long period of relaxation with no further action (named “Allow its Natural Workings”: ANW), these two states were detailed checked in my research separately. Besides, in order to get some original information, four kinds of ordinary physiological signals were detected, which were: SAO2 (%), ETCO2 (%), Heart Rate (BPM) and Respiration Rate (BPM). The EEG signals were also detected.

Sixteen subjects were reported in COQS-IPQ study. Certain brain regions showed activation with statistical significance (p<0.005), which were: vACC, declive, middle occipital gyrus, corpora quadrigemina, thalamus, pineal body, fusiform gyrus, hippocampus, superior temporal gyrus, precuneus, precentral gyrus, insula, middle temporal gyrus, culmen and cingulate gyrus. These brain regions implied profound correlation between meditation and physiological adjustments. With the same analytical condition, no negative activation regions were found.

Seventeen subjects participated in COQS-ANW study. Certain brain regions showed negative and positive activation with statistical significance (p<0.05). The main negative activation regions are: dACC, superior frontal gyrus, caudate body, amygdala and superior temporal gyrus. The positive activation regions are: vACC, declive, culmen, thalamus and hypothalamus. As meditation is such a complicated mental operation depending upon the physical and mental circumstances of each subject, I supposed that it might exhibit difference of temporal activity among meditation process. The temporal effects were also studied. Within the analytic process, the ANW state was divided into three periods to check the activation patterns. Special results had been found. It also showed several BOLD (Blood Oxygenation Level Dependent) signal patterns among the hypothalamus activation which concluded the hypothesis that their exhibited differences of temporal activity during meditation process. These results implied that the internal hormone adjustment might occur in different period during meditation process depending upon the physical and mental circumstances of each subject.

The experimental results exhibited meaningful brain regions which supplied profound implications to the understanding of neural regulating activities. These may also impel further studies to the establishment of systematic interpretations for the meditation exercise. Since COQS-IPQ stage showed pineal activation, the salivary melatonin study might serve as an indirect and quantitative evidence of the activation of pineal body. The elaborate reason which causes pineal activation still need more study.

The schematic diagrams of the COQS-IPQ and COQS-ANW operations were provided which offered the interpretations of the brain organ and the subsequent physiological affections during the meditation process. These results exhibited that neural regulating processes might perform during the meditation period. Although the experimental results offered some valuable information, as limited by the investigating technique and academic disciplines, the detail interpretations or mechanism and the correlation between meditation and human life through certain organs still need further studies.
Chapter 1 Introduction - Meditation and the Human Life
1.1 Motivation - Meditation on Body, Mind and Spiri……………………………1
1.2 Objectives and Outline of this Research…………………………………………2

Chapter 2 Material and Methods
2.1 Meditation and the Brain Research…………………………………………4
2.1.1 The Meditation Study………………………4
2.1.2 Instruments for Brain Research Adopted in Meditation Study…………………10
2.2 Principles of Functional MRI ………………………………………………14
2.2.1 Physiological Reactions during Brain Activation………………………14
2.2.2 Blood Oxygenation Level Dependent Contrast………………………16
2.2.3 Temporal Properties of BOLD Signal …………………………17
2.3 Paradigm Design and Analysis Methods………………………………………18
2.3.1 Paradigm Design …………………………………………………………18
2.3.2 Within Subject Analysis……………………………19
2.3.3 Between Subject Analysis ………………………………………21
2.3.4 Model Free Analysis……………………………………………………22
2.4 fMRI Experiment Design……………………………………………25
2.4.1 The Meditation Style……………………………25
2.4.2 Subject Agreement and Paradigm Design………………………………25
2.4.3. Equipment and Data Acquisition……………………………………26
2.4.4. Data Analysis and Image Performance……………………………26
2.5 Salivary Melatonin and Urine Serotonin Detection…………………………29
2.5.1 Introduction to the Melatonin and Serotonin Analysis ………………….29
2.5.2 Salivary Melatonin Analysis………………………29
2.5.3. Urine Serotonin Analysis………………………………………31

Chapter 3 Physiological Signal Detection and EEG Experiment
3.1 Ordinarily Physiological Signal Detection……………………………………34
3.2 EEG Experiment……………………39

Chapter 4 Experimental Results of fMRI and Melatonin Studies
4.1 The COQS-IPQ fMRI Results …………………………………………………48
4.1.1 Subjects and Instrument Information…………………………………………48
4.1.2 The Analytic Results of COQS-IPQ by SPM…………………………………49
4.1.3 The Analytic Results of COQS-IPQ by FACT of the Pineal Activation ……49
4.2 The COQS-ANW fMRI Results ………………………………………………56
4.2.1 Subjects and Instrument Information……………………………………56
4.2.2 The Analytic Results of COQS-ANW by SPM…………………………56
4.2.3 The Analytic Results of COQS-ANW by FACT on Hypothalamus as the Activity Study in Temporal Scale………………………………………58
4.3 The Melatonin and Serotonin Results…………………………………………63
4.3.1 Subject Information and Self-Evaluations………………………………63
4.3.2 The Analytic Results of the Salivary Melatonin……………………….....63
4.3.3 The Analytic Results of the Urine Serotonin……………………………64
4.3.4 Overall Aspects of Melatonin Analysis Results…………………………65

Chapter 5 Discussion and Conclusions
5.1 Discussion ……………………………………………………………………71
5.1.1 The Ordinary Physiological Signals and EEG Detections………………71
5.1.2 The Activation Regions Compared with Other Researchers……………72
5.1.3 The Interpretation of Neural Regulating during Meditation Process……73
5.2 Conclusions ……………………………………………………………………81
5.3 Future Works ……………………………………………………………82

References …………………………………………………………………………83

Appendix An interpretation of the activation of pineal body during meditation process…………………………………………………92
1. Manocha R. Why meditation? Australian Family Physician 2000; 29(12): 1135-1138.
2. Pettinati PM. Meditation, yoga, and guided imagery. Nursing Clinics of North America 2001; 36(1): 47-56.
3. Edwards L. Meditation as medicine: benefits go beyond relaxation. Advance for Nurse Practitioners 2003; 11(5): 49-52.
4. Tacon AM. Meditation as a complementary therapy in cancer. Family & Community Health 2003; 26(1): 64-73.
5. Cardoso R, de Souza E, Camano L and Leite JR. Meditation in health: an operational definition. Brain Research. Brain Research Protocols 2004; 14(1): 58-60.
6. National Center for Complementary and Alternative Medicine, Meditation for Health Purposes, http://nccam.nih.gov/health/meditation/overview.htm#references.
7. Bonadonna R. Meditation''s impact on chronic illness. Holistic Nursing Practice 2003; 17(6): 309-319.
8. Newberg AB and Iversen J. The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Medical Hypotheses. 2003; 61(2): 282-291.
9. Caspi O and Burleson KO. Methodological challenges in meditation research. Advances in Mind-Body Medicine 2005; 21(1): 4-11.
10. Luskin F. Transformative practices for integrating mind-body-spirit. Journal of Alternative and Complementary Medicine 2004; 10(suppl 1): S15-S23.
11. Guyton AC and Hall JE. Textbook of Medical Physiology, 11 ed., W. B. Saunders Company 2005, Ch.80, pp.1009-1010.
12. Lokhorst G.J. Descartes and the Pineal Gland. The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/pineal-gland/. (2006)
13. Burnham D and Fieser J. René Descartes (1596-1650). The Internet Encyclopedia of Philosophy. http://www.iep.utm.edu/d/descarte.htm. (2006)
14. Austin JH. Part III Neurologizing. ZEN AND THE BRAIN: toward an Understanding of Meditation and Consciousness. The MIT Press 1999, Ch.43, pp.196.
15. Barinaga M. Buddhism and Neuroscience: Studying the Well-Trained Mind. Science 2003; 302(5642): 44-46.
16. Knight J. Religion and Science: Buddhism on the brain. Nature News@Nature 2004; 432: 670-670.
17. Herzog H, Lele VR, Kuwert T, Langen KJ, Kops ER and Feinendegen LE. Changed pattern of regional glucose metabolism during yoga meditative relaxation. Neuropsychobiology 1991; 23(4):182-187.
18. Lou HC, Kjaer TW, Friberg L, Wildschiodtz G, Holm S and Nowak M. A 15O-H2O PET study of meditation and the resting state of normal consciousness. Hum. Brain Mapp. 1999; 7(2): 98-105.
19. Lou HC, Nowak M and Kjaer TW. Chapter 14: The mental self, Prog. Brain Res. 2005; 150: 197-204.
20. Kjaer TW, Bertelsen C, Piccini P, Brooks D, Alving J and Lou HC. Increased dopamine tone during meditation-induced change of consciousness. Cognitive Brain Res. 2002; 13(2):255-259.
21. Lazar SW, Bush G, Gollub RL, Fricchione GL, Khalsa G and Benson H. Functional brain mapping of the relaxation response and meditation. Neuroreport 2000; 11(7): 1581-1585.
22. Newberg A, Pourdehnad M, Alavi A and d''Aquili EG. Cerebral blood flow during meditative prayer: preliminary findings and methodological issues. Percept. Mot. Skills. 2003; 97(2): 625-630.
23. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J and d''Aquili E. The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res. 2001; 106(2): 113-122.
24. Lo PC, Huang ML and Chang KM. EEG alpha blocking correlated with perception of inner light during Zen meditation. Am. J. Chin. Med. 2003; 31(4): 629-642.
25. Lutz A, Greischar LL, Rawlings NB, Ricard M and Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. Unit. States Am. 2004; 101(46): 16369-16373.
26. Takahashi T, Murata T, Hamada T, Omori M, Kosaka H, Kikuchi M, Yoshida H and Wada Y. Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int. J. Psychophysiol. 2005; 55(2):199-207.
27. Jevning R, Anand R, Biedebach M and Fernando G. Effects on Regional Cerebral Blood Flow of Transcendental Meditation. Physiol. Behav. 1996; 59(3): 399-402.
28. Yamamoto S, Kitamura Y, Yamada N, Nakashima Y and Kuroda S. Medial prefrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study. Acta Med. Okayama 2006; 60(1):51-58.
29. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF, Urbanowski F, Harrington A, Bonus K, and Sheridan JF. Alterations in Brain and Immune Function Produced by Mindfulness Meditation. Psychosom. Med. 2003; 65: 564-570.
30. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H, Rauch SL, Moore CI and Fischl B. Meditation experience is associated with increased cortical thickness. Neuroreport 2005; 16(17): 1893-1897.
31. Hölzel BK, Ott U, Hempel H, Hackl A, Wolf K, Stark R and Vaitl D. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci. Lett. 2007; 421: 16-21.
32. Lutz A., Brefczynski-Lewis J., Johnstone T., Davidson R.J. Regulation of the Neural Circuitry of Emotion by Compassion Meditation: Effects of Meditative Expertise. PLoS ONE 2008; 3(3): e1897.
33. Solberg EE, Ekeberg O, Holen A, Ingjer F, Sandvik L, Standal P A and Vikman A. Hemodynamic changes during long meditation Appl Psychophysiol Biofeedback 2004; 29(3): 213-221.
34. Barnes VA, Davis HC, Murzynowski JB and Treiber FA. Impact of meditation on resting and ambulatory blood pressure and heart rate in youth Psychosom Med. 2004; 66(6): 909-914.
35. Kakigi R, Nakata H, Inui K, Hiroe N, Nagata O, Honda M, Tanaka S, Sadato N and Kawakami M. Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation European Journal of Pain 2005; 9(5): 581-589
36. Orme-Johnson DW, Schneider RH, Son YD, Nidich S and Cho ZH, Neuroimaging of meditation''s effect on brain reactivity to pain. Neuroreport 2006; 17(12):1359-1363.
37. Introducing ''Chinese Original Quiet Sitting''. http://www.tienti.org/about/qsit.php/.
38. Lee YC (Han-ching Lao-jen) and Mair DC. Tempering of the spirit, The Ultimate Realm-a New Understanding of Cosmos and Life, Tienti Teachings Publishing Co., 1994; ch. 5(4): 84-91.
39. Chen JC, Tsai HY, Lee TC and Wang QF. The Effect of Orthodox Celestial Emperor (Tian-Di) Meditative Qigong on Electroenphalogram. J. Chin. Med. 1997; 8(3): 137-154.
40. Liou CH, Hsieh CH, Lee SC, Fang SC, Hsieh CW and Chen JH, Studies of Forced and Non-forced Chinese Meditation by Using Functional Magnetic Resonance Imaging. Neuroimage 2004; 22, TU 259.
41. Liou CH, Hsieh CW, Hsieh CH, Wang CH, Lee SC and Chen JH. Studies of Chinese Original Quiet Sitting by Using Functional Magnetic Resonance Imaging: Exploring the Brain Activation Area of “Invitation of Primordial Qi” Stage. Neuroimage 2005; 26, 1452 TH–PM.
42. Liou CH, Hsieh CW, Hsieh CH, Wang CH, Lee SC and Chen JH. Studies of Chinese Original Quiet Sitting by Using Functional Magnetic Resonance Imaging. 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC05) 2005; ID 990.
43. Kim SG and Ugurbil K, Functional magnetic resonance imaging of the human brain. Journal of Neuroscience Methods 1997; 74: 229–243.
44. Cohen MS and Bookheimer SY. Localization of brain function using magnetic resonance imaging. Trends in Neurosciences 1994; 17(7): 268-277.
45. Webster JG, Medical Instrumentation: Application and Design. John Wiley & Sons, Inc., 1998, 3rd ed., Ch. 12, sec. 12, pp 562-565.
46. http://en.wikipedia.org/wiki/Positron_emission_tomography
47. Webster JG, Medical Instrumentation: Application and Design. John Wiley & Sons, Inc., 1998, 3rd ed., Ch. 12, sec. 11, pp 561-562.
48. http://en.wikipedia.org/wiki/Single_photon_emission_computed_tomography
49. Webster JG, Medical Instrumentation: Application and Design. John Wiley & Sons, Inc., 1998, 3rd ed., Ch. 4, sec. 8, pp 156-175.
50. http://en.wikipedia.org/wiki/Electroencephalography
51. Webster JG, Medical Instrumentation: Application and Design. John Wiley & Sons, Inc., 1998, 3rd ed., Ch. 4, sec. 8, pp 175-176.
52. http://en.wikipedia.org/wiki/Magnetoencephalography
53. Pérez JJ, Guijarro E and Barcia JA. Influence of the scalp thickness on the intracranial contribution to rheoencephalography. Phys. Med. Biol. 2004; 49: 4383-4394.
54. Guijarro E, Pérez JJ, Berjano E and Ortiz P. Sensitivity of rheoencephalographic measurements to spatial brain electrical conductivity. Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006.
55. Churchland PS and Sejnowski TJ. Perspectives on Cognitive Neuroscience. Science 1988, 242(4879): 741-745.
56. Belliveau J, Cohen M, Weisskoff R, Buchbinder B and Rosen B. Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroimag 1991; 1(1): 36-41.
57. Jezzard P, Matthews PM and Smith SM (ed). Functional MRI – An Introduction to Methods. Oxford University Press 2001. ch.1, pp.3-6.
58. Jezzard P, Matthews PM and Smith SM (ed). Functional MRI – An Introduction to Methods. Oxford University Press 2001. ch.7, pp.145-156.
59. Magistretti PJ and Pellerin L. Regulation of cerebral energy metabolism. In Moonen CTW and Bandettini PA (ed) Functional MRI. Springer, Berlin. 1999. ch.3, pp.25-32.
60. Villringer A. Physiological changes during brain activation. In Moonen CTW and Bandettini PA (ed) Functional MRI. Springer, Berlin. 1999. ch.1, pp.3-11.
61. Kuschinsky W. Regulation of cerebral blood flow. In Moonen CTW and Bandettini PA (ed) Functional MRI. Springer, Berlin. 1999. ch.2, pp.16-22.
62. Fox PT and Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 1986; 83: 1140-1144.
63. Fox PT, Raichle ME, Mintun MA and Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241: 462-464.
64. Malonek D and Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996; 272: 551-554.
65. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, and Ugurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995; 33: 453-459.
66. Ogawa S, Lee TM, Kay AR and Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990; 87: 9868-9872.
67. Pauling L and Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA 1936; 22: 210-216.
68. Orrison WW, Lwine JD, Sanders JA and Hartshorne MF. Functional Brain Mapping, Chapter 7. Mosby-Year Book, Inc. St. Louis, 1995.
69. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM and Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993; 64: 803-812.
70. Buckner RL, Bandettini PA, O’Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996; 93: 14878-14883.
71. Bandettini PA, Jesmanowicz A, Wong EC and Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 1993; 30: 161-173.
72. Hu X, Le TH and Ugurbil K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn. Reson. Med. 1997; 37: 877-884.
73. Sobel N, Prabhakaran V, Zhao Z, Demond JE, Glover GH, Sullivan EV and Gabrieli JD. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 2000; 83: 537–551.
74. Walpole RE and Myers RH. Probability and statistics for engineers and scientists. 4th ed., New York: Macmillan Publishing Co. (1995)
75. Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD and Frackowiak RSJ. Statistical Parametric Maps in Functional Imaging - A General Linear Approach. Human Brain Mapping 1995; 2: 189-210.
76. Baker JR, Weisskoff RM and Stern CE. Statistical assessment of functional MRI signal change. Proc. ISMRM 2nd Ann. Meeting, San Francisco, USA, 1994.
77. Press WH, Flannery BP, Teukolsky SA and Vetterling WT. Numerical recipes in C: The art of scientific computing. Cambridge University Press, pp. 490-492.
78. Talairach J and Tournoux P. Co-Planar stereotaxic atlas of the human brain: an approach to medical cerebral imaging. New York: Thieme, 1988.
79. Toga AW. Brain warping. San Diego: Academic Press. 1998.
80. Fischl B, Sereno MI, Tootell RBH and Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapping 1999; 8: 272–284.
81. Chuang KH, Chiu MJ, Lin CC and Chen JH, Model-Free Functional MRI Analysis Using Kohonen Clustering Neural Network and Fuzzy C-Means, IEEE Transactions on Medical Imaging 18(12), 1999, pp. 1117-1128.
82. Pal NR, Bezdek JC, and Tsao ECK. Generalized Clustering Networks and Kohonen’s Self-Organizing Scheme. IEEE Trans. Neural Networks, Vol. 4, pp.549-556, 1993.
83. SPM (Statistical Parametric Mapping). http://www.fil.ion.ucl.ac.uk/spm/.
84. Functional MRI Analysis and Clustering Tools (FACT). http://mr.ee.ntu.edu.tw/~khchuang/download.html.
85. Massion AO, Tears J, Hebert JR, Wertheimer MD and Kabat-Zinn J. Meditation, Melatonin and Breast/Prostate Cancer: Hypothesis and Preliminary Data. Med Hypotheses 1995; 44: 39–46.
86. Tooley GA, Armstrong SM, Norman TR and Sali A. Acute increases in night-time plasma melatonin levels following a period of meditation. Biol Psychol 2000; 53: 69–78.
87. Harinath K, Malhotra AS, Pal K, Prasad R, Kumar R, Kain TC, Rai L and Sawhney RC. Effects of Hatha Yoga and Omkar Meditation on Cardiorespiratory Performance, Psychologic Profile, and Melatonin Secretion. J Altern Comp Med 2004; 10(2):261–268.
88. Solberg EE, Holen A, Ekeberg O, Osterud B, Halvorsen R, Sandvik L. The effects of long meditation on plasma melatonin and blood serotonin. Med Sci Monit 2004; 10(3): CR96–101.
89. Carlson LE, Speca M, Patel KD and Goodey E. Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress and levels of cortisol, dehydroepiandrosterone sulfate (DHEAS) and melatonin in breast and prostate cancer outpatients. Psychoneuroendocrinology 2004; 29: 448–474.
90. Bujatti M and Biederer P. Serotonin, noradrenaline, dopamine metabolites in transcendental meditation-technique. J Neural Transm. 1976; 39(3): 257–267.
91. Besthorn C, Forstl H, Geiger-Kabish C, Sattel H, Gasser T and Schreiter-Gasser U. EEG coherence in Alzheimer disease. Electroencephalogr Clin Neurophysiol. 1994 Sep.; 91(3) 232-233.
92. Guyton AC and Hall JE. Textbook of Medical Physiology, 11 ed., W. B. Saunders Company 2005, Ch.75, pp.919-921.
93. Bush G., Luu P and Posner MI. Cognitive and emotional influences in anterior cingulated cortex. Trends in Cognitive Science 2000; 4(6): 215-222.
94. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA and Rauch SL. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulated affective division. Biol. Psychiatry 1998; 44(12): 1219–1228.
95. Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A and Alonso-González C. Melatonin estrogen interactions in breast cancer. J Pineal Res 2005; 38(4): 217–222.
96. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP and Maestroni GJ. Melatonin, environmental light, and breast cancer. Breast Cancer Res Treat. 2007; 103(3): 331-341.
97. Mills E, Wu P, Seely D and Guyatt G. Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis, J Pineal Res 2005; 39(4): 360–366.
98. Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H and Reiter RJ. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001; 30(2): 65–74.
99. Natarajan M, Reiter RJ, Meltz ML and Herman TS. Effect of melatonin on cell growth, metabolic activity, and cell cycle distribution. J Pineal Res 2001; 31(3): 228–233.
100. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM and Reiter RJ. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003; 34(1): 75–78.
101. Kaptanoglu E, Palaoglu S, Demirpence E, Akbıyık F, Solaroglu I and Kılınc A. Different responsiveness of central nervous system tissues to oxidative conditions and to the antioxidant effect of melatonin. J Pineal Res 2003; 34(1): 32–35.
102. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V and Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36(1): 1–9.
103. Magri F, Sarra S, Cinchetti W, Guazzoni V, Fioravanti M, Cravello L and Ferrari E. Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res 2004; 36(4): 256–261.
104. Iwasaki S, Nakazawa K, Sakai J, Kometani K, Iwashita M, Yoshimura Y and Maruyama T. Melatonin as a local regulator of human placental function. J Pineal Res 2005; 39(3): 261–265.
105. Snyder SH, Zweig M, Axelrod J and Fischer JE. Control of the Circadian Rhythm in Serotonin Content of the Rat Pineal Gland. Proc Natl Acad Sci U. S. A. 1965; 53(2): 301–305.
106. Zimmerman NH and Menaker M. The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci U. S. A. 1979; 76(2): 999–1003.
107. Takahashi JS, Hamm H and Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U. S. A. 1980; 77(4): 2319–2322.
108. Nogueira Pires ML, Benedito-Silva AA, Pinto L, Souza L, Vismari L & Calil HM. Acute effects of low doses of melatonin on the sleep of young healthy subjects. J Pineal Res 2001; 31(4): 326–332.
109. Arendt J and Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev 2005; 9(1):25–39.
110. Nelson RJ and Drazen DL. Melatonin Mediates Seasonal Changes in Immune Function. Ann NY Acad Sci 2000; 917:404–415.
111. Majewski P, Adamska I, Pawlak J, Bara ska A and Skwar o-So ta K. Seasonality of pineal gland activity and immune functions in chickens. J Pineal Res 2005; 39(1): 66–72.
112. Revell VL, Kim H, Tseng CY, Crowley SJ and Eastman CI. Circadian phase determined from melatonin profiles is reproducible after 1 wk in subjects who sleep later on weekends. J Pineal Res 2005; 39:195–200.
113. Bush G, Luu P, and Posner MI. Cognitive and emotional influences in anterior cingulated cortex. Trends in Cognitive Science 2000; 4(6): 215-222.
114. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA and Rauch SL. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulated affective division. Biol. Psychiatry 1998; 44(12): 1219–1228.
115. University of California Primate Superior Colliculus http://keck.ucsf.edu/~sabes/Cortex/SC.htm
116. Klier E, Wang H and Crawford D. Three-Dimensional Eye-Head Coordination Is Implemented Downstream From the Superior Colliculus. Journal of Neurophysiology 2003; 89: 2839-2853.
117. Krauzlis R, Liston D and Carello C. Target selection and the superior colliculus: goals, choices and hypotheses. Vision Research 2004; 44: 1445-1451.
118. Kustov A and Robinson D. Shared neural control of attentional shifts and eye movements. Nature 1996; 384: 74-77.
119. Sparks D. Conceptual issues related to the role of the superior colliculus in the control of gaze. Current Opinion in Neurobiology 1999; 6(9): 698-707.
120. http://en.wikipedia.org/wiki/Inferior_colliculus
121. http://en.wikipedia.org/wiki/Amygdala
122. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah N, Habel U, Schneider F and Zilles K. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 2005; 210 (5-6): 343–52. doi:10.1007/s00429-005-0025-5. PMID 16208455.
123. Killcross S, Robbins T and Everitt B. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 1997; 388 (6640): 377–80. doi:10.1038/41097. PMID 9237754.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊