|
[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, and V. Sacrist’an. Proximity problems for time metrics induced by the l1 metric and isothetic networks. IX Encuetros en Geometria Computacional, 2001. [2] M. Abellanas, F. Hurtado, B. Palop. Transportation networks and voronoi digrams. Proc. of International Symposium on Voronoi Diagrams in Science and Engineering, September 2004, 203-212. [3] M. Abellanas, F. Hurtado, V. Sacrist´an, C. Icking, L. Ma, R. Klein, E. Langetepe, B. Palop. Voronoi digram for services neighboring a highway. Information Processing Letters 86 (2003) 283-288. [4] O. Aichholzer, F. Aurenhammer, D. Z. Chen, D.T. Lee and E. Papadopoulou. Skew Voronoi Diagram. Int’l J. Comput. Geometry and Apllications, 9(3), June 1999, pp. 235-248. [5] S. W. Bae and K.-Y. Chwa. Voronoi diagrams with a transportation network on the euclidean plane. Technical report, Korea Advanced Institute of Science and Technology, 2005. A preliminary version appeared in proceedings of ISAAC 2004. [6] S. W. Bae and K.-Y. Chwa. Shortest Paths and Voronoi Diagrams with Transportation Networks Under General Distances. Algorithms and Computation: 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005. [7] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 1:132-133, 1972. [8] D.T. Lee. Two Dimensional Voronoi Diagram in the Lp-metric. J. ACM, Oct. 1980, 604-618. [9] D.T. Lee and R. L. Drydale. Generalization of Voronoi Diagram in the Plane.SIAM J. Comput. Feb. 1981, 73-87. [10] D.T. Lee, Chung-Shou Liao, and Wei-Bung Wang. Time-Based Voronoi Diagram. Proc. of International Symposium on Voronoi Diagrams in Science and Engineering, September 2004, 229-243. [11] B. Palop. Algorithmic problems on proximity and location under metric constraints. PhD thesis, Universitat Polit`ecnica de Catalunya, 2003. [12] E. Papadopoulou and D.T. Lee. A New Approach for the Geodesic Voronoi Diagram of Points in a Simple Polygon and Other Restricted Polygonal Domains. Algorithm, 20(4), April 1998, 319-352. [13] F. P. Preparata, D. E. Muller. Finding the Intersection of n Half-Spaces in Time O(n log n). Theor. Comput. Sci. 8: 45-55 (1979). [14] Franco P. Preparata, Micheal Ian Shamos. Computational Geometry An Introduction, Springer. [15] T. K. Yu and D. T. Lee, Time Convex Hull with a Highway, Proc. 4th ISVD Int’l Symp. Voronoi Diagrams in Science and Engineering (ISVD 2007), Wales, UK, July 2007.
|