跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佑叡
研究生(外文):Yu-Jui Lin
論文名稱:用於智慧型手持裝置影像穩定之影像融合演算法
論文名稱(外文):An Image Fusion Algorithm for Image Stabilization on Hand-Held Consumer Electronics
指導教授:顏嗣鈞
指導教授(外文):Hsu-Chun Yen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:50
中文關鍵詞:影像穩定智慧型手持裝置影像融合多張影像超解析
外文關鍵詞:Image StabilizationHand-Held Consumer ElectronicsImage FusionMulti-ImageSuper-Resolution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現今許多智慧型手持裝置都配備了數位相機模組,隨著這些手持裝置越來越輕,伴隨而來的就是拍照時越容易晃動的問題。數位相機上都配有影像穩定的機制,但多數為光學式的防手震處理,若是使用數位式的影像穩定處理則可以達到成本降低的目的,尤其是手機這種智慧型手持裝置是很難去使用好的鏡頭來做光學式防手震處理的。
在本篇論文中,針對在智慧型手持裝置上的數位式影像穩定處理,我們提出了一個可以有效降低計算量的演算法,使得影像穩定在手機上可以完全以數位式的方式處理,而不會有運算過久或者無法運作的情況發生。
Many handheld consumer electric devices with camera module are developed to be lighter and smaller. The problem is easy to hand-shake when user take photos. To overcome this condition, many digital cameras avoid image blur with optical image stabilize system. If we use digital image stabilize to solve this problem, the total cost will be reduce a lot. It is hard to use good camera shutter to achieve optical image stabilization on hand-held consumer electronics.
In this thesis, we propose an efficient algorithm for digital image stabilization on consumer electronic device. To assure image stabilization, we reconstruct a good quality image by fusion several short-exposed degraded dark image of the same scene. And this algorithm can truly work on consumer electronics with short execution time.
誌謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES v
Chapter 1 Introduction 1
Chapter 2 Preliminaries 5
2.1 Digital Image Restoration 5
2.1.1 Single Frame Image Restoration 6
2.1.2 Multi-Frame Image Restoration 9
Chapter 3 Image Registration and Image fusion by Super-Resolution 18
3.1 Image Registration 18
3.2 Image Fusion by Super-Resolution 22
3.2.1 Basic Super-Resolution Model 22
3.2.2 Mathematical Formulation of Super-Resolution 25
Chapter 4 Cost-Function and Luminance Enhancement 29
4.1 Cost Function 29
4.2 Luminance Enhancement 31
4.3 Entire Algorithm 33
Chapter 5 Experiment Results 34
5.1 Experiment Platform 34
5.2 Experiment result of our algorithm 35
Chapter 6 Conclusion and Future Work 46
References 48
[1] M. Alkanhal, D. Turaga, and T. Chen, “Correlation BasedSearch Algorithms for Motion Estimation,” in 1999 Picture Coding Symposium, 1999
[2] B. Bascle, A. Blake, and A. Zisserman, “Motion Deblurring and Super-Resolution from an Image Sequence,” in Proc. European Conf. Computer Vision, 1996, pp.573-582
[3] A. C. Bovik, “Handbook of Image and Video Processing,” Elsevier, 2005.
[4] D. Capel and A. Zisserman, "Computer Vision Applied to Super Resolution," IEEE Signal Processing Magazine, vol. 20, no. 3, pp.75-86, 2003.
[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1, 1-38. 1977
[6] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, "Removing Camera Shake from a Single Image," ACM Transaction on Graphics, vol. 25, no. 3, pp.787-794, 2006.
[7] M. Irani, S. Peleg, “Super Resolution From Image Sequences,” Technical Report 89-7, The Hebrew University of Jerusalem, June 1989
[8] M. Irani, S. Peleg, “Improving Resolution by Image Registration,” CVGIP: Graph. Models Image Process, Vo1.53, pp.23 1-239, May 1991
[9] M. Irani and S. Peleg, "Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency," Journal on Visual Communications and Image Representation, vol. 4, no. 4, pp.324-335, 1993.
[10] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step Search Algorithm for Block Motion Estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 438–442, Aug. 1994.
[11] S. Peleg and A. Zomet, “Super-Resolution from Mulitiple Images Having Arbitrary Mutual Motion,” School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel
[12] A. Rav-Acha and S. Peleg, “Two Motion-Blurred Images are Better than One,” in Pattern Recogition Letters, Volume 25, 2005, pp.311-317
[13] A. Rav-Acha and S. Peleg, “Restoration of Multiple Images with Motion Blur in Different Directions,” in Proc. of the Fifth IEEE Workshop on Applications of Computer Vision (WACV ’00, pp.22-28)
[14] E. Shechtman, Y. Caspi and M. Irani, “Space-Time Super-Resolution,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Volume 27, No.4, April 2005
[15] M. G. Strintzis “Maximum Likelihood Motion Estimation in Ultrasound Image Sequences,” IEEE and Isaac Kokkinidis 1997
[16] M. Tico and M. Vehvilainen, "Robust Image Fusion for Image Stabilization," in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 565-568, 2007.
[17] Lu Yuan, Jain Sun, Long Quan and Heung-Yeung Shum, “Image Deblurring with Blurred/Noisy Image Pairs,” in ACM SIGGRAPH, pp. 0730-0301, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top