跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫弘
研究生(外文):Hong Sun
論文名稱:白點症病毒蛋白VP28與草蝦Rab7蛋白結合之研究
論文名稱(外文):The study of binding between VP28 of WSSV and Rab7 of giant tiger prawn Penaeus monodon
指導教授:韓玉山韓玉山引用關係
指導教授(外文):Yu-San Han
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:70
中文關鍵詞:蝦類白點症病毒VP28蛋白Rab7蛋白草蝦受體
外文關鍵詞:WSSVVP28Rab7Giant tiger prawnReceptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:524
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蝦類白點症病毒 (White spot syndrome virus, WSSV) 在九0年代初期首次出現於東南亞一帶,由於它可感染的甲殼類宿主種類相當廣泛,且在感染後七到十天便可造成養殖對蝦近百分之百的死亡率,因此疫情擴迅速擴散至全球,所到之處均造成蝦類繁養殖場極大的的經濟損失,迄今仍是危害全球養蝦產業的重要疾病之一。蝦類白點症病毒目前已知具有約四十餘種的病毒蛋白,其中約有二十二種屬於膜蛋白,負責構成一般認為與病毒感染能力具有正相關的套膜,而其中的兩種套膜蛋白 (VP26 and VP28) 便佔了蝦類白點症病毒套膜蛋白總量約三分之二,VP28更在文獻中被指出是套膜上含量最為豐富的病毒蛋白。不僅如此,以多株抗體或單株抗體AP-1中和VP28後亦可降低蝦類感染及死亡率,因此被認為是在蝦類白點症病毒感染宿主的過程中不可或缺的病毒蛋白。由於先前研究提及VP28可結合蝦細胞表面,故找尋宿主細胞與病毒蛋白VP28結合之受體可釐清病毒感染的途徑。過去的研究曾以E. coli表現VP28進行草蝦血球細胞膜蛋白之結合試驗,希望找尋與其結合之受體蛋白,結論指出蝦Rab7蛋白可能扮演此角色,但此實驗之設計及結論可能有兩個問題。一、E. coli屬於原核生物,缺乏真核生物的轉譯後修飾,因此表現所得的VP28相較於分離自感染白點症病毒蝦隻的VP28推測有結構上的差異;二、文獻指出真菌、綠猴 (Vero) 腎臟細胞與人類子宮頸腫瘤細胞 (HeLa cell) 之Rab7蛋白不存在細胞膜面上,也不參與向細胞內運輸的液泡形成,而Rab7蛋白在物種間的保留性極高,因此出現於蝦體細胞膜與VP28結合之可能性不大。有鑑於此,本實驗將VP28基因同源重組到桿狀病毒表現系統 (Baculovirus expression system) 後感染昆蟲細胞株sf-9製備VP28蛋白,再以E. coli表現選殖自草蝦的Rab7蛋白,與VP28單株抗體AP-1進行競爭性酵素連結免疫吸附分析 (Compete enzyme-link immunosorbent assay, Compete ELISA),結果發現Rab7與單株抗體AP-1對VP28之結合無競爭現象,而已知AP-1處理的草蝦在WSSV攻毒實驗中所顯示的存活率顯著高於未處理組別,由這兩項結果得知,Rab7無法與AP-1競爭結合VP28的抗原決定基位,因此推測Rab7並非位於蝦細胞最早與WSSV VP28接觸引發感染機制的蛋白,而Rab7在WSSV感染徑中之角色尚待進一步釐清。
White spot syndrome virus (WSSV) was first emerged in south Asia in the early 1990’s. It has a wide range of hosts among crustaceans and causes up to 100% mortality within 7 to 10 days in cultured shrimps. It was spread out all over the world rapidly. Until now, white spot syndrome has become one of the most serious viral diseases of cultivated shrimp and causes considerable economic losses to the shrimp farming industry worldwide. Currently, there are about 40 structural proteins of WSSV being identified, of which 22 are envelope proteins constructing the infection-related structure. VP28 and VP26 are the most abundant structural proteins observed in the viral envelope, accounting for approximately two-thirds of the envelope proteins. Furthermore, in neutralization experiments, anti-VP28 polyclonal or monoclonal antibody such as AP-1 can protect shrimp from WSSV infection and reduce mortality, therefore it has been considered to be the most important viral protein in WSSV infection. In order to find out the VP28 receptor on shrimp cell, E. coli expressed VP28 was used to run binding test in Penaeus monodon hemocyte in pervious study. The Rab7 protein was thought to directly bind VP28. However, there are some problems about this study. First, E. coli belongs to prokaryotes which lack posttranslational modification as in eukaryotes, hence there would have some structural differences between VP28 of WSSV and that expressed by E. coli. Second, in previous study, Rab7 does not involve in vesicle formation and inner transportation in yeast, vero cell and HeLa cell, and even does not exist on cell membrane. In addition Rab7 is highly conserved in function domain and gene sequence among species. Therefore, the probability is very low for Rab7 to bind VP28 on shrimp cell membrane. In this study, VP28 gene was homologous recombined to the baculovirus and infected insect cell line (sf-9) to express VP28 viral protein. The E. coli expressed Rab7 and anti-VP28 monoclonal antibody, AP-1, were used for compete enzyme-link immunosorbent assay (Compete ELISA). Results showed that Rab7 did not compete with AP-1 on binding VP28. The survival rate of AP-1 treated shrimps was significantly higher than those AP-1 untreated ones after WSSV challenge. Taken together, Rab7 may not directly involve in WSSV infection on the plasma membrane, and the role of Rab7 needs further studies.
中文摘要 ........................................... I
Abstract ........................................... III
目錄 ............................................... V

一、前言 ........................................... 1
1. 蝦類養殖概況 .................................... 1
2. 蝦類白點症病毒 .................................. 2
2.1 白點症病毒之病徵與危害 ......................... 3
2.2 白點症病毒之內外部型態特徵與分類 ............... 5
2.3 蝦類白點症病毒結構蛋白 ......................... 7
2.3.1 白點症病毒套膜蛋白VP28 ....................... 7
2.4 蝦類白點症的防治 ................................ 10
3. 蝦類白點症病毒受體蛋白 ........................... 13
4. Rab蛋白 .................................................. 14
5. 桿狀病毒蛋白表現系統 ............................. 15
6. 研究動機與目的 ................................... 17

二、材料與方法 ...................................... 18
1. 實驗材料 ......................................... 18
1.1 生物性材料 ...................................... 18
1.2 反應試劑 ........................................ 19
1.3 儀器與器材 ...................................... 25
2. 實驗方法 ......................................... 26
2.1 草蝦Rab7基因選殖與蛋白表現 ...................... 26
2.1.1 草蝦total RNA之萃取 ........................... 26
2.1.2 反轉錄酶-聚合酶連鎖反應 ....................... 26
2.1.3 RT-PCR產物膠體電泳分析萃取 .................... 27
2.1.4 構築載體 ...................................... 27
2.1.5 轉型作用 ...................................... 28
2.1.6 鹼裂解法抽取小量質體DNA與定序.................. 28
2.1.7 草蝦Rab7蛋白表現 .............................. 29
2.2 桿狀病毒表現系統製備蝦白點症病毒蛋白VP28......... 30
2.2.1 細胞培養與病毒蛋白表現 ........................ 30
2.3 聚丙醯硫胺膠體電泳 (SDS PAGE) 與西方墨點法進行蛋白質定性 ........ 30
2.3.1 聚丙醯硫胺膠體電泳之蛋白樣本製備 .............. 31
2.3.2 聚丙醯硫胺膠體電泳 ............................ 31
2.3.3 蛋白質轉印 .................................... 32
2.3.4 西方墨點法進行草蝦Rab7蛋白定性 ................ 32
2.3.5 西方墨點法進行白點症病毒蛋白VP28定性 .......... 32
2.4 競爭性酵素連結免疫吸附分析 (ELISA) .............. 33
2.4.1 Rab7蛋白與VP28單株抗體AP-1競爭性酵素連結免疫吸附分析 ....... 34
2.5 實驗流程 ........................................ 35

三、試驗結果 ........................................ 36
1. 草蝦Rab7基因選殖與蛋白表現 ....................... 36
2. 桿狀病毒表現系統製備白點症病毒蛋白................ 36
3. 西方墨點法進行蛋白質定性 ......................... 37
4. 競爭性酵素連結免疫吸附分析 ....................... 37
四、討論 ............................................ 38
五、總結............................................. 40
六、參考文獻 ........................................ 41
七、圖表 ............................................ 51
Ayres, M. D., S. C. Howard, J. Kuzio, M. Lopez-Ferber and R. D. Possee (1994). The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586-605.
Bourne, H. R., D. A. Sanders, and F. McCormick. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 38: 125-132.
Bucci, C., R. G. Parton, I. H. Mather, H. Stunnenberg, K. Simons, B. Hoflack and M. Zerial (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70: 715-728.
Burgess, S. (1977). Molecular weights of lepidopteran baculovirus DNAs: Derivation by electron microscopy. J. Gen. Virol. 37: 501-510.
Burton, D. R., R. A. Williamson and P. W. H. I. Parren (2000). Antibody and virus: Binding and neutralization. Virology 270: 1-3.
Cai, S. L., J. Huang, C. M. Wang, X. L. Song, X. Sun, J. Yu, Y. Zhang and C. H. Yang (1995). Epidemiological studies on the explosive epidemic disease of prawn in 1993–1994. J. Fish China 19: 112-117.
Chang, P. S., C. F. Lo, Y. C. Wang and G. H. Kou (1996). Identification of white spot syndrome associated baculovirus (WSSV) target organs in shrimp, Penaeus monodon, by in situ hybridization. Dis. Aquat. Org. 27: 131-139.
Chang, C. F., M. S. Su, H. Y. Chen, C. F. Lo, G. H. Kou and I. C. Liao (1999). Effect of dietary h-1,3-glucan on resistance to white spot syndrome virus (WSSV) in postlarval and juvenile Penaeus monodon. Dis. Aquat. Org. 36: 163-168.
Chen, L. L., J. H. Leu, C. J. Huang, C. M. Chou, S. M. Chen, C. H. Wang, C. F. Lo, and G. H. Kou (2002). Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology 293: 44-53.
Chen, L. L., L. C. Lu, W. J. Wu, C. F. Lo and W. P. Huang (2007). White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Dis. Aquat. Org. 74: 171-178.
Chotigeat, W., S. Tongsupa, K. Supamataya and A. Phongdara (2004). Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture 233: 23-30.
Chou, H. Y., C. Y. Huang, C. H. Wang, H. C. Chiang and C. F. Lo (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis. Aquat. Org. 23:165-173.
Citarasu, T., V. Sivaram, G. Immanuel and N. Rout (2006). Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol. 21: 372-384.
Direkbusarakom, S., A. Herunsalee, S. Boonyaratpalin, Y. Danayadol and U. Aekpanithanpong, (1995). Effect of Phyllanthus spp. against Yellow-Head Baculovirus infection in Black Tiger Shrimp, Penaeus monodon. In: Shariff, M., Arthur, J.R., Subasinghe, R.P. (Eds.), Diseases in Asian Aquaculture II. Fish Health Section, Asian Fisheries Society, Manila, pp. 81-88.
Dupuy, J. W., J. R. Bonami and, P. h. Roch (2004). A synthetic antibacterial peptide from Mytilus galloprovincialis reduces mortality due to white spot syndrome virus in palaemonid shrimp. J. Fish Dis. 27: 57-64.
Durand, S., D. V. Lightner, R. M. Redman, and J. R. Bonami (1997). Ultrastructure and morphogenesis of White Spot Syndrome Baculovirus (WSSV). Dis. Aquat. Org. 29: 205-211.
Flegel, T.W. (1997). Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J. Microbiol. Biotechnol. 13: 433-442.
Francki, R. I. B., C. M. Fauquet, D. L. Knudson, F. Brown (1991). Classification and nomenclature of viruses. Arch. Virol. Suppl. 2: 1-450.
Gorvel, J. P., P. Chavrier, M. Zerial, J. Gruenberg (1991). Rab5 controls early endosome fusion in vitro. Cell 64: 915-925.
Granof, A. and R. G. Webster (1999). Encyclopedia of Virology, 2nd edn. San Diego: Academic Press.
Harrap, K. A. (1972). The structure of nuclear polyhedrosis viruses. The inclusion body. Virology 50: 114-123.
Hoss, A., I. Moarefi, K. H. Scheidtmann, L. J. Cisek, J. L. Corden, I. Dornreiter, A. K. Arthur and E. Fanning (1990). Altered phosphorylation pattern of simian virus 40 T antigen expressed in insect cells by using a baculovirus vector. J. Virol. 64: 4799-4807.
Hossain, M. S., S. Khadijah, and J. Kwang (2004). Characterization of ORF89, a latency-related gene of white spot syndrome virus. Virology 325: 106-115.
Hsu, H. C., C. F. Lo, K. F. Liu, M. S. Su, G. H. Kou (1999). Studies on effective PCR screening strategies for white spot syndrome virus (WSSV) detection in Penaeus monodon brooders. Dis. Aquat. Org. 39: 13-19.
Inouye, K., S. Miwa, N. Oseko, H. Nakano and T. Kimura (1994). Mass mortalities of cultured kuruma shrimp, Penaeus japonicus, in Japan in 1993: Electron microscopic evidence of the causative virus. Fish Pathol. 29: 149-158.
Inouye, K., K. Yamano, N. Ikeda, T. Kimura, H. Nakano, K. Momoyama, J. Kobayashi and S. Miyajima (1996). The penaeid rod-shaped DNA virus (PRDV), which causes penaeid acute viremia (PAV). Fish Pathol. 31: 39-45.
Itami, T., M. Asano, K. Tokishige, K. Kubono, A. Nakagawa, N. Takeno, H. Nishimura, M. Maeda, M. Kondo and Y. Takahashi (1998). Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture 16: 277-288.
Khadijah, S., S. Y. Neo, M. S. Hossain, L. D. Miller, S. Mathavan, and J. Kwang (2003). Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J. Virol. 77: 10162-10167.
Kidd, I. M. and V. C. Emery (1993). The use of baculoviruses as expression vectors. Appl. Biochem. Biotechnol. 42: 137-159.
Kim, C. S., Z. Kosuke, Y. K. Nam, S. K. Kim and K. H. Kim (2007). Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 23: 242-246.
Kloc, M,. B. Reddy, S. Crawford and L. D. Etkin (1991). A novel 110-kDa maternal CAAX box-containing protein from Xenopus is palmitoylated and isoprenylated when expressed in baculovirus. J. Biol. Chem. 266: 8206-8212.
Kool, M. and J. M. Vlak. (1993). The structural and functional organization of the Autographa californica nuclear polyhedrosis virus genome. Arch. Virol. 130: 1-16.
Kuroda, K., M. Veit and H. D. Klenk, (1991). Retarded processing of influenza virus hemagglutinin in insect cells. Virology 180: 159-165.
Leu, J. H., J. M. Tsai, H. C. Wang, A. H. Wang, C. H. Wang, G. H. Kou, and C. F. Lo (2005). The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. J. Virol. 79: 140-149.
Li, D. F., M. C. Zhang, H. J. Yang, Y. B. Zhu and X. Xu (2007). Beta-integrin mediates WSSV infection. Virology. 368: 122-132.
Liao, I. C., T. L. Huang and K. Katsutani (1969). A preliminary report on artificial propagation of Penaeus monodon Fabricius. Reports of Fish Culture Research Supported by Rockfeller Foundation, JCRR Fish Ser. 8: 67-71.
Liao, I. C. and T. Murai (1985). Some essential factors in prawn culture and development-with special reference to achievements in Taiwan. Presented at II Simposio Brasileiro Sobre Cultivo de Camarao, Parnaiba, Piani, Brasil.
Liao, I. C. (1989). Penaeus monodon culture in Taiwan: Through two decades of growth. Int. J. Aquacult. Fish. Technol. 1: 16-24.
Lightner, D. V. (1996) A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. World Aquaculture Society, Baton Rouge, La.
Liu, B., Z. Yu, X. Song and Y. Guan (2007). Studies on the transmission of WSSV (white spot syndrome virus) in juvenile Marsupenaeus japonicus via marine microalgae. J .Invertebr. Pathol. 95: 87-92.
Lo, C. F., C. H. Ho, S. E. Peng, C. H. Chen, H. C. Hsu, Y. L. Chiu, Y. T. Chen, C. F. Chang, K. F. Liu, M. S. Su, C. H. Wang, and G. H. Kou (1996a). Infection of white spot syndrome associated virus (WSBV) in cultured and wild-caught shrimps, crabs and other arthropods. Dis. Aquat. Org. 27: 215-225.
Lo, C. F., J. H. Leu, C. H. Ho, C. H. Chen, S. E. Peng, Y. T. Chen, C. M. Chou, P. Y. Yeh, C. J. Huang, H. Y. Chou, C. H. Wang, and G. H. Kou (1996b). Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis. Aquat. Org. 25: 133-141.
Lo, C. F., C. H. Ho, C. H. Chen, K. F. Liu, Y. L. Chiu, P. Y. Yeh, S. E. Peng, H. C. Hsu, H. C. Liu, C. F. Chang, M. S. Su, C. H. Wang and G. H. Kou (1997). Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis. Aquat. Org. 30: 53-72.
Lo, C. F., G. H. Kou (1998). Virus associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathol. 33: 365-371.
Marks, H., M. Mennens, J. M. Valk and M. C. W. Van Hulten (2003). Transcriptional analysis of the white spot syndrome virus major virion protein genes. J. Gen. Virol. 84: 1517-1523.
Mayo, M. A. (2002). A summary of taxonomic changes recently approved by ICTV. Arch. Virol. 147: 1655-1656.
Miaczynska, M. and M. Zerial (2002). Mosaic organization of the endocytic pathway. Exp. Cell Res. 272: 8-14.
Momoyama K., M. Hiraoka, H. Nakano, H. Koube, K. Inouye and N. Oseko (1994). Mass mortalities of cutured kuruma shrimp, Penaeus japonicus, in Japan in 1993: histopathological study. Fish Pathol. 29: 141-148.
Nadala, E. C. B., L. M. Tapay, and P. C. Loh (1998). Characterization of a non-occluded baculovirus-like agent pathogenic to penaeid shrimp. Dis. Aquat. Org. 33: 221-229.
O’Reilly, D., L. K. Miller and V. A. Luckow (1992). Baculovirus expression vectors: A laboratory manual. W.H. Freeman and Company, New York, NY.
Peng, S. E., C. F. Lo, S. C. Lin, L. L. Chen, Y. S. Chang, K. F. Liu, M. S. Su and G. H. Ko (2001). Performance of WSSV-infected and WSSV-negative Penaeus monodon postlarvae in culture ponds. Dis. Aquat. Org.46: 165-172.
Pereira-Leal, J. B. and M. C. Seabra (2001). Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313: 889-901.
Rahman, C. M., M. Escobedo-Bonilla, V. Wille, L. Alday Sanz, J. Audoorn, M. B. Neyts, P. Pensaert and, H. J. Sorgeloos Nauwynck (2006). Clinical effect of cidofovir and a diet supplemented with Spirulina platensis in white spot syndrome virus (WSSV) infected specific pathogen-free Litopenaeus vannamei juveniles. Aquaculture 255: 600-605.
Rameshthangam, P. and P. Ramasamy (2007). Antiviral activity of bis(2-methylheptyl) phthalate isolated from Pongamia pinnata leaves against White Spot Syndrome Virus of Penaeus monodon Fabricius. Virus Res. 126: 38-44.
Rout, N., S. Kumar, S. Jaganmohan and V. Murugan (2007). DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine. 25: 2778-2786.
Sarathi, M., M. C. Simon, V. P. Ahmed, S. R. Kumar and A. S. Hameed (2008). Silencing VP28 Gene of White Spot Syndrome Virus of Shrimp by Bacterially Expressed dsRNA. Mar. Biotechnol. (NY) 10: 198-206.
Sheff, D. R., E. A. Daro, M. Hull and I. Mellman (1999). The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145: 123-139.
Song, Y. L., J. J. Liu, L. C. Chan and H. H. Sung (1997). Glucan-induced disease resistance in tiger shrimp (Penaeus monodon). In: Gudding, R., Lillehaug, A., Midtlyng, P.J., Brown, F. (Eds.), Fish Vaccinology. Karger, Basel, pp. 413-421.
Takahashi, Y., T. Itami, M. Kondo, M. Maeda, R. Fujii, S. Tomonaga, K. Supamattaya and S. Boonyaratpalin (1994). Electron microscopic evidence of bacilliform virus infection in kuruma shrimp (Penaeus japonicus). Fish Pathol. 29: 121-125.
Takahashi, Y., T. Itami, M. Maeda and M. Kondo (1998). Bacterial and viral diseases of kuruma shrimp (Penaeus japonicus) in Japan. Fish Pathol. 33: 357-364.
Takahashi, Y., M. Kondo, T. Itami, T. Honda, H. Inagawa, T. Nishizawa, G. I. Soma and Y. Yokomizo (2000). Enhancement of disease resistance against penaeid acute viremia and induction of virus-inactivating activity in haemolymph of kuruma shrimp, Penaeus japonicus, by oral administration of Pantoea agglomerans lipopolysaccharide (LPS). Fish Shellfish Immunol. 10: 555-558.
Takai, Y., T. Sasaki and T. Matozaki (2001). Small GTP-binding proteins. Physiol. Rev. 81: 153-208.
Tang, X., J. Wu, J. Sivaraman and C. L. Hew (2007). Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. J. Virol. 81: 6709-6717.
Tsai, M. F., C. F. Lo, M. C. W. van Hulten, H. F. Tzeng, C. M. Chou, C. J. Huang, C. H. Wang, J. Y. Lin, J. M. Vlak, and G. H. Kou (2000a). Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277: 92-99.
Tsai, M. F., H. T. Yu, H. F. Tzeng, J. H. Leu, C. M. Chou, C. J. Huang, C. H. Wang, J. Y. Lin, G. H. Kou, and C. F. Lo (2000b). Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277: 100-110.
Tsai, J. M., H. C. Wang, J. H. Leu, H. H. Hsiao, A. H. Wang, G. H. Kou, and C. F. Lo (2004). Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J. Virol. 78: 11360-11370.
Tsai, J. M., H. C. Wang, J. H. Leu, A. H. Wang, Y. Zhung, P. J. Walker, G. H. Kou, and C. F. Lo (2006). Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J. Virol. 80: 3021-3029.
Tzeng, H. F., Z. F. Chang, S. E. Peng, C. H. Wang, J. Y. Lin, G. H. Kou, and C. F. Lo (2002). Chimeric polypeptide of thymidine kinase and thymidylate kinase of shrimp white spot syndrome virus: thymidine kinase activity of the recombinant protein expressed in a baculovirus/insect cell system. Virology 299: 248-255.
Van der Sluijs, P., M. Hull, P. Webster, P. Male, B. Goud and I. Mellman (1992). The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70: 729-740.
Van Etten, J. L., M. V. Graves, D. G. Muller, W. Boland, and N. Delaroque (2002). Phycodnaviridae – large DNA algal viruses. Arch. Virol. 147 :1479-1516.
Van Hulten, M. C. W., M. Westenberg, S. D. Goodall, and J. M. Vlak (2000). Identification of two major virion protein genes of white spot syndrome virus of shrimp. Virology 266: 227-236.
Van Hulten, M. C. W., J. Witteveldt, S. Peters, N. Kloosterboer, R. Tarchini, M. Fiers, H. Sandbrink, R. K. Lankhorst, J. M. Vlak (2001a). The white spot syndrome virus DNA genome sequence. Virology 286: 233-241.
Van Hulten, M. C. W., J. Witteveldt, M. Snippe and J. M. Vlak (2001b). White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology. 285: 228-233.
Van Hulten, M. C. W., M. Reijus, A. M. G. Vermeesch, F. Zandbergen, and J. M. Vlak (2002). Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation of the WSSV major structural proteins. J. Gen. Virol. 83: 257-265.
Van Regenmortel, M. H. V., C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle and R. B. Wickner (editors) (2000). Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press.
Vonderheit, A. and A. Helenius (2005). Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol. 3: e233.
Wang, C. H., C. F. Lo, J. H. Leu, C. M. Chou, P. Y. Yeh, H. Y. Chou, M. C. Tung, C. F. Chang, M. S. Su and G. H. Kou (1995). Purification and genomic analysis of baculovirus associated 103 with white spot syndrome (WSBV) of Penaeus monodon. Dis. Aquat. Org. 23: 239-242.
Wang, Y. G., M. D. Hassan, M. Shariff, S. M. Zamri and X. Chen (1999). Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. Dis. Aquat. Org. 39: 1-11.
Wang, Q., B. T. Poulos and D. V. Lightner (2000). Protein analysis of geographic isolates of shrimp white spot syndrome virus. Arch. Virol. 145: 263-274.
Withyachumnarnkul, B. (1999). Results from black tiger shrimp penaeus monodon culture ponds stocked with postlarvae PCR-positive or -negative for white-spot syndrome virus (WSSV). Dis. Aquat. Org. 39: 21-27.
Witteveldt, J., C. C. Cifuentes, J. M. Vlak and M. C. Van Hulten (2004a). Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J. Virol. 78: 2057-2061.
Witteveldt, J., J. M. Vlak and M. C. Van Hulten (2004b). Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol. 16: 571-579.
Witteveldt, J., J. M. Vlak and M. C. van Hulten (2006). Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28. Dis. Aquat. Org. 70: 167-170.
Wongteerasupaya, C., J. E. Vickers, S. Sriurairatana, G. L. Nash, A. Akarajamorn, V. Boonsaeng, S. Panyim, A. Tassanakajon, B. Withyachumnarnkul, and T. W. Flegel (1995). A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon. Dis. Aquat. Org. 21: 69-77.
Xu, J., F. Han and X. Zhang (2007). Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res. 73: 126-131.
Yang, F., W. Wang, R. Z. Chen, X. Xu (1997). A simple and efficient method for purification of prawn baculovirus DNA. J. Virol. Methods 67: 1-4.
Zhang, X., C. Huang, X. Xu, and C. L. Hew (2002). Transcription and identification of an envelope protein gene (p22) from shrimp white spot syndrome virus. J. Gen. Virol. 83: 471-477.
Zhang, X., C. Huang, X. Tang, Y. Zhuang, and C. L. Hew (2004). Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 55: 229-235.
Zhang, J. S., S. L. Dong, Y. W. Dong, X. L. Tian and C. Q. Hou (2008). Bioassay evidence for the transmission of WSSV by the harpacticoid copepod Nitocra sp. J. Invertebr. Pathol. 97: 33-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top