|
[1] D Ling, H. Y. Hsu, G Lin, S. H. Lee, Enhanced image-based coordinate measurement using a super-resolution method, Robotics and Computer-Integrated Manufacturing 21 (2005), pp. 579--588.
[2] A. Chambolle, An Algorithm for Total Variation Minimization and Applications, Journal of Mathematical Imaging and Vision 20(2004), pp. 89--97.
[3] F. Malgouyres, Minimizing the Total Variation Under a General Convex Constraint for Image Restoration, IEEE Trans. Image Processing, 11(2002), pp. 1450--1456.
[4] Y. Li, F. Santosa, A computational algorithm for minimizing total variation in image restoration, IEEE Trans. Image Processing, 5(1996), pp. 987--995.
[5] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259--268.
[6] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput, 17 (1996), pp. 227--238.
[7] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variationbased image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964--1977.
[8] Q. Chang, I. L. Chern, Acceleration Methods for Total Variation-Based Image Denoising, SIAM J. Sci. Comput, 25(2003), pp. 982--994.
[9] Vogel C, Acar R, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. Printed in the UK.
[10] Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs
|