跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭伊婷
研究生(外文):Yi-Ting Jheng
論文名稱:質子交換膜燃料電池結構之分析與最佳化設計
論文名稱(外文):Analysis and Optimum Design of a PEM Fuel Cell Structure
指導教授:鍾添東鍾添東引用關係
指導教授(外文):Tien-Tung Chung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:65
中文關鍵詞:質子交換膜燃料電池有限元素分析熱變形分析結構最佳化設計紅外線熱影像儀
外文關鍵詞:PEM fuel cellFinite element analysisThermal analysisStructural optimizationInfrared thermography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究質子交換膜燃料電池之結構分析與最佳化設計。目的為使用有限元素法分析燃料電池在穩態的運作下其結構行為。首先,提出一新型之質子交換膜燃料電池,並發展一參數化繪圖程式以自動繪製燃料電池所有元件之實體模型,將模型匯入至有限元素分析軟體建立網格模型。此分析模型之負載包括化學反應產生之熱、碳板內冷卻水效應與施加於端板上之鎖合力,計算出燃料電池之溫度分布與熱變形。單電池與多電池組燃料電池均進行此分析。並且使用紅外線熱影像儀量測燃料電池表面之溫度分布,將分析結果與量測結果做驗證,溫度分布趨勢是相同且接近的。根據分析結果,熱效應是造成燃料電池各元件產生較高應力之主因且會造成碳板破裂。最後,提出一整合型最佳化設計程式,此程式整合電腦輔助繪圖軟體、有限元素分析軟體及數值搜尋,以找出滿足設計限制條件且提高碳板結構強度之最佳化設計。從分析與最佳設計之結果顯示,本文之結構分析與最佳化設計方法可有效率地應用於燃料電池之分析與設計。
This paper studies the structural analysis and optimum design of a proton exchange membrane (PEM) fuel cell stack. The aim of this study is to recognize the structural behaviors of PEM fuel cell under operation stage at steady state by using finite element analysis (FEA). First, the PEM fuel cell models are constructed with whole components. The models for FEA are generated by a CAD software with a parametric program, and then are imported into FEA software to generate meshed model. Next, with given thermal and structural loadings, a series of finite element analyses are executed to analyze the thermal and structural behaviors of PEM fuel cell. A meshed model of a single cell is generated and analyzed at the beginning. The boundary conditions are applied into the meshed model, such as heat generation of chemical reaction, force convection of cooling water, and assembly pressure on the end plate, to obtain the behaviors of single cell. Besides, the analyses of multiple-cell short stack are executed as well. Finally, temperature measurement method of infrared (IR) thermography is applied to record the temperature distribution of exterior surfaces in a PEM fuel cell and verify the simulation results. It shows that the analysis results are generally close to the experiment results. The thermal effect is identified as the main factor for the high stresses and will cause the failure of the fuel cell components, especially for carbon plates. Also, an optimum design procedure is performed to obtain a better carbon plate structure design satisfying the structural safety requirement.
Acknowledgments I
Abstract III
摘要 V
Table of Contents VII
List of Figures IX
List of Tables XIII
Nomenclature XV
Chapter 1 Introduction 1
Chapter 2 Design of a PEM fuel cell stack 9
2.1 Parametric design 9
2.2 Solid modeling 11
Chapter 3 Analysis of a PEM fuel cell stack 13
3.1 Finite element model 13
3.2 Temperature distribution analysis 16
3.2.1 Thermal loadings and boundary conditions 16
3.2.2 Results of temperature distribution analysis 21
3.3 Thermal Deformation Analysis of a PEM Fuel Cell Structure 24
3.3.1 Structural boundary and loading conditions 24
3.3.2 Results of thermal deformation analysis 25
3.3.3 Effect of temperature distribution 31
Chapter 4 Experimental Verification 35
4.1 Temperature Measurement System Setup 35
4.2 Experiment Results 37
4.2.1 Temperature measurement results 37
4.2.2 Cracks in the carbon plate 46
Chapter 5 Optimum Design of a PEM Fuel Cell Structure 49
5.1 Integrated Optimum Design Program 49
5.2 Parameter tests of dimensional sensitivity 53
5.3 Optimization problem 56
5.4 Optimum Design of a PEM fuel cell Structure 58
Chapter 6 Conclusions and Perspectives 61
6.1 Conclusions 61
6.2 Perspectives 62
References 65
VITA 77
[1]J. Park, X. Li, “Effect of flow and temperature distribution on the performance of a PEM fuel cell stack,” Journal of Power Sources 162, pp.444-459, 2006
[2]W. K. Lee, C. H. Ho, J. W. V. Zee and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell, ” Power Source 84, pp. 45-51, 1999
[3]M. Mathias, J. Roth, J. Fleming and W. Lehnert, Handbook of fuel cells-fundamentals technology and applications volume 3, John Wiley & Sons Ltd, pp. 526-529, 2003
[4]Yei- Hung Lai, Daniel P Miller, Chunxin Ji, and Thomas A Trabold, “Stack Compression on PEM Fuel Cells,” Proceedings of the First International Conference on Fuel Cell Science, Engineering and Technology, Rochester, New York USA , 2004
[5]J. Evertz and M. Gunthart, “Structure concepts for lightweights and cost-effective end plated for fuel cell stacks,” In 2nd European PEFC Forum 2003.
[6]Shuo-Jen Lee , Chen-De Hsu, Ching-Han Huan, “Analyses of the Fuel Cell Stack Assembly Pressure,” Journal of Power Sources, 145 pp. 353-361, 2005
[7]B. Wozniczka, “Chemical fuel cell stack with compression bands,” US Patent 5993987, 1999
[8]S. A. Grot, “Fuel cell stack compression method and apparatus,” US Patent 6428921, 2002
[9]P.R. Gibb, “Compression assembly for an chemical fuel cell stack,” US Patent 6057053, 2000
[10]O.J. Murphy, “Apparatus and method for compressing a stack of chemical cells,” US Patent 6040071, 2000
[11]Z. Dong, “Solid gage fuel cell,” US Patent 6720101, 2004
[12] X. Wang, Y. Song and B. Zhang, “Pressurized end plate for uniform pressure distributions in PEM fuel cells,” First International Conference on Fuel Cell Development and Deployment, Storrs, Connecticut, 2004.
[13]C. K. Lin, T. T. Chen, Y. P. Chyou and L. K. Chiang, “Thermal stress analysis of a planar SOFC stack,” Power Sources. J., vol. 164, pp. 238-251, 2007
[14] M. H. Wang, H. Guo, C. F. Ma, F. Ye, J. Yu, X. Liu, Y. Wang, C. Y. Wang, “Temperature Measurement Technologies and Their Application in The Research of Fuel Cells,” Proceedings of the First International Conference on Fuel Cell Science, Engineering and Technology, pp. 95–100, 2003
[15] A. Hakenjos, H. Muenter, U. Wittstadlt, C. Hebling, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding,” Journal of Power Sources, 131 pp. 213–236, 2004.
[16] R. Zheng, Z. Dong, “Finite Element Structure Design of Fuel Cell Plate”, 11th Canadian Hydrogen Conference, pp.183-191, 2001
[17]Yunus, A., “Heat transfer – a practical approach”, McGraw-Hill, New York, Chap.6-9 and pp.868, 2004.
[18]邱求慧, “結構最佳設計保守近似法之改良”, 台大機械所博士論文, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊