跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉士維
研究生(外文):Shih-Wei Liu
論文名稱:先進高強度鋼板沖壓成形之回彈分析
論文名稱(外文):Analysis of Springback in the Stamping Process with Advanced High Strength Steel Sheets
指導教授:陳復國陳復國引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:先進高強度鋼板沖壓成形特徵造型回彈現象回彈機制CAE模式模面設計
外文關鍵詞:advanced high strength steel (AHSS)stampingspringback compensationspringback mechanismCAE methodtool design
相關次數:
  • 被引用被引用:8
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於日益嚴苛的環保要求,以及能源價格的不斷上升,因此如何提高燃油的效率,是汽車製造以及相關產業所面臨的最大課題,汽車輕量化的需求也就由此產生,而因輕金屬價格仍然居高不下,故對於汽車鋼構件之應用,仍然以使用鋼材為主,進而促使先進高強度鋼之研究開發。由於先進高強度鋼之強度較傳統鋼板為高,故使用先進高強度鋼取代傳統強度之鋼板時,可使得載具所需之厚度較使用傳統鋼板時為低,而能夠達到汽車減重之目的。然而由於高強度鋼板強度的提升,使得其經過沖壓成形所產生之回彈現象,亦較傳統鋼板來得嚴重且難以解決,而造成模具開發時間與成本之耗費。
為了提升模具設計之正確性與時效性,電腦輔助分析(computer aided engineering, CAE)技術已被廣泛地應用於模具設計階段,然而目前針對先進高強度鋼板沖壓之模擬準確性,仍有許多問題待克服與解決,因此如何建立最佳之CAE技術,亦是相關產業與學界所刻不容緩進行研究的議題。本論文首先選定使用先進高強度鋼板之實際載具,並定義可反應回彈現象之幾何造型為回彈參數,以各載具第一道次之成形工程,再以專業之沖壓分析軟體PAM-STAMP,探討製程及模擬等二大類參數對於回彈現象之影響,並建立最適當之先進高強度鋼板沖壓成形CAE模式。
對於先進高強度鋼CAE模式之驗證,本論文針對實際業界載具-前保險桿內板與車側門檻件成形之全工程,首先利用逆向工程照相掃描技術,獲得載具成形工程之模具表面資料,其次定義載具中反應回彈現象之幾何造型為回彈參數,使用分析軟體PAM-STAMP進行模擬分析並與掃描實際板件所獲得之資料比對,其中於車側門檻件之比對中,由分析結果修正了模擬沖壓速度之設定,最後完成確認預測回彈參數之準確率。
對於實際案例之模面設計,本論文以完成建立與驗證之CAE模式,選定前保險桿內板與門檻件之模面設計,針對所定義探討之造型參數,使用模擬技術輔助分析回彈現象,以造型參數的回彈結果來討論載具之模面設計,確認並修正回彈補償量後決定模面造型參數之設定值,經反覆設計分析使板件成形後達到成品設計所需之目標。
先進高強度鋼板於汽車之應用,目前主要以安全與強度之結構件為主,為了提升先進高強度鋼載具開發之時效與效益,因此有必要針對常見之載具造型,定義特徵造型並探討其回彈現象與機制,以提供模具設計之參考依據。本論文針對汽車鋼構件常見之造型,定義具代表性之隧形樑特徵造型,並對於其普遍使用之成形工法進行分析,包含一次彎曲及二次彎曲之工法,探討其分別對應之回彈現象與回彈機制。
Along with the intensifying of energy crisis and environmental problems, energy saving and safety have become the most important issues for auto-making and related industry. To achieve these goals, weight reduction is most effective, which leads to the fast development and application of advanced high strength steels (AHSS). However, due to the increasing strength, the use of advanced high strength steel has encountered the springback issue, which is more serious and hard to be solved than that occurs in the stamping of conventional steel sheets.
Computer aided engineering (CAE) technology has been widely adopted for assisting the development of stamping tools in the design stage. Nevertheless, the accuracy of springback prediction of CAE technology in the sheet metal stamping of advanced high strength steel is yet to be improved. Therefore, this thesis begins with the study of the effects of the simulation parameters on the accuracy of the springback prediction. The finite element code PAM_STAMP was employed and the dimensions of production automotive parts such as side sill were measured to validate the CAE simulations results. An optimum set of simulation parameters was thus determined and the accuracy of the springback prediction by the CAE simulations was then improved.
With the use of the validated CAE model, the stamping die designs for two automotive parts, front bumper inner plate and side sill part, were studied. The multi-stage forming process used to manufacture the parts was designed and simulated by the proposed CAE model. The design concept of springback compensation was applied to reduce the springback on the production parts. With the aid of the CAE technology, optimum stamping die designs for the two automotive parts were proposed and the sound production parts with dimension variations within the design tolerances confirm the validity of the CAE simulations.
Due to the applications of advanced high strength steel in automobile are usually the structural parts. The tunnel-beam shape bears the characteristic geometry for these structural parts. In order to study the springback properties in this characteristic geometry, two common forming processes, single bend and double bend, were simulated in the present study. The mechanism of springback was analyzed and the effects of different forming process on the reduction of springback were examined with the aid of the proposed CAE model.
圖 目 錄 V
表 目 錄 XII
第一章 前言 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法與步驟 7
1.4 論文總覽 8
第二章 先進高強度鋼之簡介 10
2.1 汽車用鋼強度演進之介紹 10
2.2 先進高強度鋼之分類定義 11
2.2.1 冶金方式之分類 11
2.2.2 強度等級之分類 12
2.2.3 機械性質或成形參數之分類 13
2.3 先進高強度鋼之發展現況 13
2.3.1 雙相(DP)鋼之介紹 14
2.3.2 變態誘發塑性(TRIP)鋼之介紹 16
2.3.3 熱作(HF)鋼之介紹 18
第三章 先進高強度鋼板沖壓成形之CAE模式 21
3.1 分析載具與分析方法之介紹 21
3.1.1 分析載具之介紹 21
3.1.2 分析方法之說明 23
3.2 製程參數之分析 27
3.2.1 摩擦係數 27
3.2.2 模具間隙 29
3.3 模擬參數之分析 31
3.3.1 板件網格尺寸 31
3.3.2 模面圓角網格尺寸 35
3.3.3 積分點數量 38
3.3.4 回彈演算法 40
3.3.5 沖壓速度 46
3.3.6 質量加載及縮減係數 51
3.3.7 運算精度 56
3.3.8 CAE模式之建立 58
第四章 先進高強度鋼板CAE模式之案例驗證 59
4.1 掃描資料於分析驗證之應用 59
4.2 前保險桿內板之驗證分析 61
4.2.1 成形工法 61
4.2.2 分析參數與回彈參數之定義 62
4.2.3 回彈參數之驗證比對 63
4.3 車側門檻件之驗證分析 65
4.3.1 成形工法 65
4.3.2 分析參數與回彈參數之定義 66
4.3.3 CAE模式之修正 68
4.3.4 回彈參數之驗證比對 74
第五章 實際案例之模具開發分析 76
5.1 前保險桿內板之模具設計分析 76
5.1.1 造型參數定義與分析參數設定之介紹 76
5.1.2 載具之模具設計分析 78
5.1.3 模面設計分析之驗證 82
5.2 門檻件之模具設計分析 82
5.2.1 造型參數定義與分析參數設定之介紹 82
5.2.2 載具之模具設計分析 85
5.2.3 模面設計分析之驗證 90
第六章 隧形樑特徵造型之回彈分析 91
6.1 特徵造型之幾何參數說明 91
6.2 一次彎曲工法之分析 94
6.2.1 工法說明 94
6.2.2 回彈現象之分析 95
6.3 二次彎曲工法之分析 98
6.3.1 工法說明 98
6.3.2 回彈現象之分析 100
第七章 結論 105
參考文獻 107
[1]M. J. Finn, P. C. Galbraith, L. Wu, J. O. Hallquist, L. Lum and T. L. Lin, “Use of coupled explicit – implicit solver for calculating spring-back in automotive body panels”, Journal of Materials Processing Technology 50 (1995) 395 – 409
[2]N. Narasimhan and M. Lovell, “Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure”, Finite Elements in Analysis and Design 33 (1999) 29 – 42
[3]I. N. Chou and C. Hung, “Finite element analysis and optimization on springback reduction”, International Journal of Machine Tools & Manufacture 39 (1999) 517 – 536
[4]K. P. Li, L. M. Geng and R. H. Wagoner, “Simulation of springback with the draw/bend test”, Intelligent Processing and Manufacturing of Materials 1 (1999) 91 – 104
[5]Auto/Steel Partnership, “Automotive sheet steel stamping process variation”, www.a-sp.org, 1999
[6]Auto/Steel Partnership, “High strength steel stamping design manual”, www.a-sp.org, 2000
[7]W. Thomas, T. Oenoki and T. Altan, “Process simulation in stamping - recent applications for product and process design”, Journal of Materials Processing Technology 98 (2000) 232 - 243
[8]J. T. Gau and G. L. Kinzel, “A new model for springback prediction in which the bauschinger effect is considered”, International Journal of Mechanical Sciences 43 (2001) 1813¬ - 1832
[9]T. Pepelnjak, G. Gantar and K. Kuzman, “Numerical simulations in optimisation of product and forming process”, Journal of Materials Processing Technology 115 (2001) 122 - 126
[10]R. A. Lingbeek, “Aspects of a designtool for springback compensation”, Master''s Thesis, University of Twente / INPRO, 2003
[11]T. Nonaka, K. Goto, H. Taniguchi, and K. Yamazaki, “Development of Ultra-High-Strength Cold-Rolled Steel Sheets for Automotive Use”, Nippon Steel Technical Report No. 88 July, 2003
[12]H. Vegter, C. H. L. J. ten Horn, Y. An, E. H. Atzema, H. H. Pijlman, T. H. van den Boogaard and H. Huétink, “Characterisation and modelling of the plastic material behaviour and its application in sheet metal forming simulation”, VII International Conference on Computational Plasticity, 2003
[13]L. Noels, L. Stainier and J. P. Ponthot, “Combined implicit_explicit algorithms for crashworthiness analysis”, International Journal of Impact Engineering 30 (2004) 1161 - 1177
[14]M. B. Silva, R. M. S. O. Baptista and P. A. F. Martins, “Stamping of automotive components: a numerical and experimental investigation”, Journal of Materials Processing Technology 155–156 (2004) 1489 - 1496
[15]A. Andersson, “Numerical and experimental evaluation of springback in a front side member”, Journal of Materials Processing Technology 169 (2005) 352 - 356
[16]C. Gomes, O. Onipede1 and M. Lovell, “Investigation of springback in high strength anisotropic steels”, Journal of Materials Processing Technology 159 (2005) 91 - 98
[17]C. Arwidson, “Numerical simulation of sheet metal forming for high strength steel”, Licentiate Thesis of Luleå University of Technology, Sweden, 2005
[18]H. Takuda, H. Fujimoto, T. Hama, and T. Maruyama, “Prediction of forming limit of high strength steel sheets”, Proceedings of 1st International Conference of Super-High Strength Steels, Rome Italy, 2005
[19]T. Dutton, R. Edwards and A. Blowey, “Tool design for a high strength steel side impact beam with springback compensation”, 5th European LS-DYNA Users Conference, 2005
[20]M. G. Lee, D. Kim, C. Kim, M. L. Wenner, R. H. Wagoner and K. Chung, “Springback evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part II_characterization of material properties”, International Journal of Plasticity 21 (2005) 883 - 914
[21]R. Lingbeek, J. Huétink, S. Ohnimus, M. Petzoldt and J. Weiher, “The development of a finite elements based springback compensation tool for sheet metal products”, Journal of Materials Processing Technology 169 (2005) 115 – 125
[22]F. Yong, “Production and application of high strength steel”, www.msm.cam.ac.uk, 2005
[23]T. Wierzbicki, “Fracture of advanced high strength steel”, web.mit.edu, 2006
[24]IISI, “AHSS Guidelines V3”, www.worldautosteel.org, 2006
[25]M. Banua, M. Takamura, T. Hama, O. Naidim, C. Teodosiu, and A. Makinouchi, “Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part”, Journal of Materials Processing Technology 173 (2006) 178 - 184
[26]I. Pahole, M. Puc, B. Vaupotič and J. Balič, “Comparison of technology of forming the sheet metal by numerical simulations”, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 403 - 406
[27]T. B. Hilditch, J. G. Speer, and D. K. Matlock, “Influence of low-strain deformation characteristics of high strength sheet steel on curl and springback in bend-under-tension tests”, Journal of Materials Processing Technology 182 (2007) 84 – 94
[28]K. Mori, K.Akita and Y. Abe, “Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press”, International Journal of Machine Tools & Manufacture 47 (2007) 321 - 325
[29]J. H. Song, H. Huh and S. H. Kim, “Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology”, Journal of Engineering Materials and Technology 129 (2007) 397 - 406
[30]H. S. Cheng, J. Cao and Z. C. Xia, “An accelerated springback compensation method”, International Journal of Mechanical Sciences 49 (2007) 267 - 279
[31]S. K. Panthi, N. Ramakrishnan, K. K. Pathak and J. S. Chouhanb, “An analysis of springback in sheet metal bending using finite element method (FEM)”, Journal of Materials Processing Technology 186 (2007) 120 – 124
[32]R. H. Wagoner and M. Li, “Simulation of springback : Through-thickness integration”, International Journal of Plasticity 23 (2007) 345 – 360
[33]M. Firat, “Computer aided analysis and design of sheet metal forming processes: Part I – The finite element modeling concepts”, Materials and Design 28 (2007) 1298 – 1303
[34]M. Firat, “Computer aided analysis and design of sheet metal forming processes: Part II – Deformation response modeling”, Materials and Design 28 (2007) 1304 - 1310
[35]M. Firat, “Computer aided analysis and design of sheet metal forming processes: Part III: Stamping die-face design”, Materials and Design 28 (2007) 1311 – 1320
[36]M. Firat, B. Kaftanoglu and O. Eser, “Sheet metal forming analyses with an emphasis on the springback deformation”, Journal of Material Processing Technology 196 (2008) 135 – 148
[37]T. K. Shan, S. H. Li, W. G. Zhang and Z. G. Xu, “ Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming”, Materials and Design 29 (2008) 1810–1816
[38]B. Jansen, “Steel identification using hardness testing”, www.i-car.com, 2007
[39]A. Kinzyk, “A new use for hydraulic presses”, www.thefabricator.com, 2006
[40]M. Gutierrez, “Material characterisation for accurate simulation of new sheet metal forming processes”, www.autosim.org, 2007
[41]R. Kolleck, “Press hardening process of boron steel sheets”, www.autofocusasia.com, 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top