跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊淳惠
研究生(外文):Chun-Hui Yang
論文名稱:微流體切換元件應用於化療藥物篩檢之研究
論文名稱(外文):An Integrated Microfluid Switching Device for In-vitro Chemosensitivity Assay
指導教授:胡文聰胡文聰引用關係
指導教授(外文):Andrew M. Wo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:30
中文關鍵詞:液體切換氣動薄膜閥防止氣泡生成細胞培養藥物篩檢化療反應分析
外文關鍵詞:flow switchpneumatic membrane valvebubble eliminationcell culturedrug screenchemosensitivity assay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統生物實驗經常需要切換數種不同流體進入所謂「生物晶片」中,如酒精、二次水、培養基、細胞懸浮液、化療藥物、螢光染劑等。本論文建立一同時具有「液體切換模組」以及「細胞培養檢測模組」之化療藥物檢測平台。液體切換模組置於上游負責按順序切換不同液體至下游之細胞培養模組。而液體在平台內的驅動為利用一台能同時推/拉多支注射筒之幫浦由下游抽拉,使經過細胞培養模組中每一腔室之流量被控制為相同。藉由調變氣壓以控制氣動薄膜閥系統,該平台能大量減少為切換流體所需之重複手動操作。在液體切換模組中,每一入口設計為密閉腔室,除可作為液體補充/放置之暫存空間,亦具有防止氣泡進入流道之功用。由上游所施加之輔助氣壓(~0.5psi)可成功將流道及下游細胞培養模組中之氣泡藉由PDMS之透氣特性由孔隙釋出。此外,為防止在同時引入不同流體(如化療藥物)時會產生流體干擾(crosstalk),特別在元件中加入抑制閥(blocking valve),避免此情況發生。本晶片在流速10μL/min之下用染劑測試結果,抑制閥可確保至少100分鐘不發生流體干擾。本晶片亦用染劑模擬生物實驗中流體切換之操作流程,實驗結果顯示,液體切換模組可成功將不同液體依序引入細胞培養模組中。此外本晶片亦展示在經由酒精消毒、二次水洗潤、膠原塗布、培養基洗潤、引入細胞懸浮液後,細胞均勻佈入細胞培養模組中,並在12小時後貼附於腔室底部,顯示細胞培養模組所營造之環境適合細胞生長。
Here we present an integrated microfluidic platform which includes two parts: flow switching module and cell culture module. This platform reduces the routine and manual work in conventional biological experiments which need to introduce numerous reagents in sequence. The fabrication of this platform dose not need the cleanroom technology which is relatively time-consuming and expensive. Pneumatic membrane valves are developed to switch the flow between different fluids by controlling the pressure. Wells of inlets are designed as the space which can temporarily store the fluids and prevent the bubble formation. The auxiliary pressure (~0.5psi) is applied from upstream to eliminate bubbles in minutes due to the air-permeability of polydimethylsiloxane (PDMS). To avoid the crosstalk between channels which introduce different fluids simultaneously, a blocking valve is added under the intersection of the channels and successfully inhibits the crosstalk. The performance of the blocking valve and the flow switching has been characterized under certain conditions. The cell culture and chemodrug screening are also demonstrated as the application of this platform.
口試委員會審訂書
誌謝
中文摘要 ………………………………………………………………………….. 4
Abstract ………………………………………………………………………....…. 5
Chapter 1. Introduction ………...………………………………………………… 6
Chapter 2. Design of the chemosensitivity platform ………...………………….. 8
2.1 Flow switching module …………………………………………………… 8
2.2 Cell culture module …………………………………………………...…. 11
Chapter 3. Materials and methods …………………………………………….... 12
3.1 Device fabrication………………………………………………………… 12
3.1.1 Flow switching module …………………………………………….. 12
3.1.2 Cell culture module ………………………………………………… 13
3.2 Operation of flow switching module ……………………………………. 14
3.3 Cell cultivation …………………………………………………………… 16
3.4 Image analysis of cell viability …………………………………………... 17
3.5 Operation of the chemosensitivity assay ………………………………... 17
Chapter 4. Results and discussion ………………………………………………. 19
4.1 Valve characterization …………………………………………………… 19
4.2 Bubble elimination ……………………………………………………….. 21
4.3 Chemosensitivity assay characterization ……………………………….. 22
Chapter 5. Conclusions ………………………………………………………...… 24
References ………………………………………………………………………… 25
Appendix ………………………………………………………………………….. 27
1. George M. Whitesides, The origins and the future of microfluidics, NATURE, 2006. 442 p.368-373
2. Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, SCIENCE, 2000. 288 p.113-116
3. William H. Grover, Robin H. C. Ivester, Erik C. Jensen and Richard A. Mathies, Development and multiplexed control of latching pneumatic valves using microfluidic logical structures, Lab Chip, 2006. 6 p.623–631
4. Daniel Irimia and Mehmet Toner, Cell handling using microstructured membranes, Lab Chip, 2006. 6 p.345–352
5. Jeung Sang Go, Shuichi Shoji, A disposable, dead volume-free and leak-free in-plane PDMS microvalve, Sensors and Actuators A, 2004. 114 p.438–444
6. Joo H. Kang, Yu Chang Kima and Je-Kyun Park, Analysis of pressure-driven air bubble elimination in a microfluidic device, Lab Chip, 2008. 8 p.176–178
7. Paul J. Hung, Philip J. Lee, Poorya Sabounchi, Nima Aghdam, Robert Lin and Luke P. Lee, A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array, Lab Chip, 2005. 5 p.44–48
8. Zhanhui Wang, Min-Cheol Kim, Manuel Marquez and Todd Thorsen, High-density microfluidic arrays for cell cytotoxicity analysis, Lab Chip, 2007. 7 p.740–745
9. J. Tanner Nevill, Ryan Cooper, Megan Dueck, David N. Breslauer and Luke P. Lee, Integrated microfluidic cell culture and lysis on a chip, Lab Chip, 2007. 7 p.1689–1695
10. Adam Rosenthal, Alice Macdonaldc, Joel Voldman, Cell patterning chip for controlling the stem cell microenvironment, Biomaterials, 2007. 28 p.3208–3216
11. Dylan Wright, Bimalraj Rajalingam, Selvapraba Selvarasah, Mehmet R. Dokmeci and Ali Khademhosseini, Generation of static and dynamic patterned co-cultures using microfabricated paralene-C stencils, Lab Chip, 2007. 7 p.1272–1279
12. Moore A, Donahue CJ, Bauer KD, Mather JP, Simultaneous measurement of cell cycle and apoptotic cell death, Methods Cell Biol. 1998. 57: p.265–278.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top