跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:3cde:41ad:c1c4:8dfe) 您好!臺灣時間:2024/12/07 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慶隆
研究生(外文):Ching-Lung Chen
論文名稱:酸萃取後含銅污泥之微波安定化研究
論文名稱(外文):Studies of Microwave Stabilization Processes for The Copper-contaminated Sludge after Acid Extraction
指導教授:駱尚廉駱尚廉引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:含銅污泥污泥安定微波程序微波燒結鐵粉氧化鐵硫化鈉
外文關鍵詞:copper-contaminated sludgesludge stabilizationmicrowave processmicrowave sinteringiron powderferric oxidesodium sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含銅污泥為台灣產量甚大之有害事業廢棄物之一,這些污泥經由酸萃取等再利用技術回收其中大部分的銅離子後,殘餘固體經過毒性特性溶出程序後其銅溶出量仍可能超過法規標準,因此仍有危害環境的風險存在。對於有害事業廢棄物,在台灣固化法是最常被採用的安定技術,由於固化法是使重金屬穩定地存在於他種物質如水泥中,因此固化後污泥的體積會增加,故當以掩埋最為最終處置時,會因此而減少掩埋場的壽命。因此本研究應用微波能量之特性來做為酸萃取後含銅污泥的新技術,避免水泥固化法增加污泥體積的缺點。

微波安定技術為一系列以微波程序為核心的安定技術之總稱,這些技術包含直接微波安定技術、安定劑之微波安定技術、微波混成技術、鐵粉之微波安定技術與微波燒結技術。藉由微波功率、反應時間、添加劑的使用、反應氣氛之改變與操作流程等方面之控制參數來增加污泥安定之效果。另外,更進一步地使用微波程序進行污泥之燒結使其成為塊狀資材,使含銅污泥安定之同時,能產生塊狀之燒結體以做為公共工程之基材或骨材。

結果顯示,以微波安定技術處理含銅污泥具有快速去除污泥中的水分,同時能去除污泥中的有機物,達成污泥礦化的能力。於污泥安定方面,直接微波安定技術安定污泥的效果受到污泥性質的影響很大,僅部分批次污泥直接進行微波安定技術即可達成安定化。當污泥進行安定劑之微波安定技術時,於短時間內即可被安定,且所使用之安定劑量少於僅使用安定劑來安定含銅污泥的。不過安定劑之微波安定技術在反應時間較長時會有銅再溶出的情形發生,而這個現象可由安定劑-惰性氣體之微波混成技術來消除,且當使用硫化鈉-氮氣之微波混成技術進行污泥安定時,硫化鈉的使用量比安定劑之微波安定技術中使用的更少。鐵粉之微波安定技術亦能有效地安定酸萃取後含銅污泥,所需之反應時間略長,不過即使無惰性氣體之導入亦不會有再溶出的現象發生。

污泥微波燒結技術的結果顯示,當以改良式微波燒結技術來處理高濃度之含銅合成污泥時,可得到紮實的燒結體。不論污泥是添加鐵粉或是氧化鐵,經改良式微波燒結技術後所得燒結體之XRD分析結果皆顯示有含銅鐵氧磁體 CuFe2O4的生成,且添加鐵粉之合成污泥所製成的燒結體經毒性特性溶出程序之後其銅溶出量可以通過法規標準。
Copper-contaminated sludge is hazardous industrial waste yielded in huge quantities in Taiwan. After the copper-contaminated sludge passed through an acid-extraction process to reclaim most of the copper ions in it, the residue, called the low copper-contaminated sludge, may still need to be treated by stabilization technologies. The common method for stabilization of the hazardous waste in Taiwan is by cement solidification. However, this method has the disadvantage of an increase in waste volume, which will shorten the service life of a landfill. In this study, the characteristics of microwave energy were used to offer a new method that can avoid this disadvantage of the cement solidification.

Microwave stabilization processes used in this study include the direct microwave process, the microwave process with stabilizers, the stabilizer-inertia gas-hybrid microwave process, the microwave process with iron powder, and the microwave sintering process. The stabilization effects of these processes were promoted by changing the microwave power and reaction time, adding some agents, leading inert gas, and altering operating procedures. Furthermore, the microwave sintering process was used to transform copper-contaminated sludge into a sinter, thus stabilizing it and producing a material for public construction at the same time.

From the results, it was found that the moisture in sludge was removed quickly and that organic matter was burned by a microwave heating. At the point of stabilization of the low copper-contaminated sludge, the direct microwave process could stabilize only some batches of sludge. When the microwave process with stabilizers was performed for sludge stabilization, it was effective and a short reaction time was required. In addition, the stabilizer amount used in this method was less than that without any assisting process. However, when the reaction time was longer, the leaching concentration of copper ions from the treated sludge increased suddenly. The stabilizer-inertia gas-hybrid microwave process could overcome the disadvantage of the microwave process with stabilizers at the long reaction time. Moreover, the dosage of sodium sulfide as a stabilizer required in the former was smaller than that in the latter. The microwave process with iron powder was also effective in the stabilization of the low copper-contaminated sludge and the reaction time required in this method was little more than those in the later methods. However, re-leaching of copper ions from the sludge treated by the microwave process with iron powder did not occur, even when the reaction time was long and inertia gas was not used.

The results of the microwave sintering process show that a hard sinter could be acquired after synthetic sludge of high copper concentration passed through the improved microwave sintering process. No matter whether ferric oxide or iron powder was used in this method, the XRD results showed that cuprospinel (CuFe2O4) was formed in sinters. Besides, the leaching concentration of copper ions from the sinter transformed from synthetic sludge with iron powder by the improved microwave sintering process was lower than the limit value specified in the Toxicity Characteristic Leaching Procedure.
口試委員會審定書………………………………………………………i
誌謝 ……………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要…………………………………………………………………v
表目錄……………………………………………………………………x
圖目錄……………………………………………………………………x
第一章 前言 ……………………………………………………………1
1-1研究背景 ……………………………………………………………1
1-2研究目的 ……………………………………………………………1
1-3研究內容 ……………………………………………………………1
第二章 文獻回顧 ………………………………………………………3
2-1水泥固化法長期溶出之研究 ………………………………………3
2-2微波技術 ……………………………………………………………4
2-2-1微波理論 …………………………………………………………4
2-2-2微波加熱之特性 …………………………………………………7
2-2-3微波之應用 ………………………………………………………9
2-3燒結技術……………………………………………………………13
2-3-1燒結理論概述……………………………………………………13
2-3-2燒結技術於廢棄物處理之應用…………………………………14
2-3-3相關微波燒結之研究……………………………………………16
第三章 材料與方法……………………………………………………18
3-1研究架構……………………………………………………………18
3-2儀器設備與器材……………………………………………………18
3-2-1實驗設備…………………………………………………………18
3-2-2分析儀器…………………………………………………………20
3-2-3藥品與器材………………………………………………………20
3-3樣品的種類、準備與基本分析……………………………………21
3-3-1污泥的來源與前處理……………………………………………21
3-3-2合成污泥…………………………………………………………22
3-3-3污泥的元素分析…………………………………………………22
3-4微波安定技術之研究………………………………………………24
3-4-1微波設備…………………………………………………………24
3-4-2直接微波安定技術………………………………………………24
3-4-3鐵粉之微波安定技術……………………………………………27
3-4-4安定劑之微波安定技術…………………………………………27
3-5微波燒結技術………………………………………………………29
3-6毒性特性溶出程序…………………………………………………30
第四章 結果與討論……………………………………………………34
4-1污泥的基本性質……………………………………………………34
4-2直接微波安定技術…………………………………………………34
4-2-1污泥含水率與重量之變化………………………………………34
4-2-2直接微波安定技術之安定效果…………………………………38
4-3鐵粉之微波安定技術………………………………………………41
4-4安定劑之微波安定技術……………………………………………51
4-4-1酸萃取後含銅污泥添加安定劑之研究…………………………52
4-4-2安定劑之微波安定技術…………………………………………56
4-4-3微波混成技術……………………………………………………59
4-5微波燒結技…………………………………………………………65
4-5-1微波燒結技術……………………………………………………65
4-5-2改良式微波燒結技術……………………………………………75
第五章 結論與建議……………………………………………………83
參考文獻 ………………………………………………………………86
附錄 實驗數據…………………………………………………………94
Aloisi, M., Karamanov, A. and Pelino, M. (2004) “Sintered Glass–ceramic from Municipal Solid Waste Incinerator Ashes”, J. non-cryst. solids, 345-346, 192-196.
Aloisi, M., Karamanov, A., Taglieri, G., Ferrante, F. and Pelino, M. (2006) “Sintered Glass Ceramic Composites from Vitrified Municipal Solid Waste Bottom Ashes”, J. Hazard. Mater., 137, 138-143.
Binner, J. G. P., Caro, I. and Firkins, J. (1999) “Microwave Sintering of Nanometer And Micrometer Ferrite Powders”, J. Microwave Power EE., 34(3), 131-136.
Bohlmann, J. T., Lorth, C. M., Drews, A. and Buchholz, R. (1999) “Microwave High Pressure Thermo-chemical Conversion of Sewage Sludge as An Alternative to Incineration”, Chem. Eng. Technol., 21, 404-409.
Bossert, J. and Ludwig, C. (1997) “Sintering of Titania under Microwave-conditions”, Materialwiss Werkst, 28(5), 241-245.
Bournonville, B., Nzihou, A., Sharrock, P. and Depelsenaire, G. (2004) “Stabilisation of Heavy Metal Containing Dusts by Reaction with Phosphoric Acid: Study of The Reactivity of Fly Ash”, J. Hazard. Mater., 116(1-2), 65-74.
Breval, E., Cheng, J. P., Agrawal, D. K., Gigl, P., Dennis, A., Roy, R. and Papworth, A. J. (2005) “Comparison between Microwave And Conventional Aintering of WC/Co Composites”, Mat. Sci. Eng. A-Struct., 391(1-2), 285-295.
Chang, H. Y., Liu, K. S. and Lin, I. N. (1995) “Conventional And Microwave Sintering Studies of SrTiO3”, J. Mater. Res., 10(8), 2052-2059.
Cherradi, A., Desgardin, G., Provost, J. and Raveau, B. (1996) “New Frontiers of The Use of Microwave to Sinter Ceramics”, Ann. Chim.-sci. Mat., 21(2-3), 103-121 1996.
Chiou, I.-J., Wang, K.-S., Chen, C.-H. and Lin, Y.-T. (2006) “Lightweight Aggregate Made from Sewage Sludge and Incinerated Ash”, Waste Manag., 26, 1453-1461.
Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P. and Pankhurst, Q. A. (1999) “Seif-propagating High-temperature Synthesis of Ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, Zn); Reactions in an External Magnetic Field” J. Mater. Chem., 9, 254-2552.
Derie, R. (1996) “A New Way to Stabilize Fly Ash from Municipal Incinerators” Waste Manag., 16 (8), 711-716.
Dunn, J. G. and Muzenda, C. (2001) “Thermal Oxidation of Covellite (CuS)”, Thermochim. Acta, 369(1-2), 117-123.
Eighmy, T. T., Crannell, B. S., Krzanowski, J. E., Butler, L. G., Cartledge, F. K., Emery, E. F., Eusden Jr, J. D., Shaw, E. L. and Francis C. A. (1998) “Characterization And Phosphate Stabilization of Dusts from TheVitrification of MSW Combustion Residues” Waste Manag., 18, 513-524.
Gan, Q. (2000) “A Case Study of Microwave Processing of Metal Hydroxide Sediment Sludge from Printed Circuit Board Manufacturing Wash Water”, Waste Manage., 20, 695-701.
Goodgame, D. M. L., Goodgame, M., Grachvogel, D. A., Hussain, I. and Williams, D. J. (2000) “Chain Polymeric Complexes of Some First-Series Transition-Metal Ions with N,N,N’,N’-Tetra-Acetyl-1,4- Diaminobutane”, J. Organome. Chem., 596, 16–21.
Gupta, M. and Wong, W. L. E. (2005) “Enhancing Overall Mechanical Performance of Metallic Materials Using Two-directional Microwave Assisted Rapid Sintering” Scripta Materialia, 52, 479-483.
Haque, K. E. (1999) “Microwave Energy for Mineral Treatment Processes – A Brief Review ”, Int. J. Miner. Process., 57, 1-24.
Hu, J., Chen, G. and Lo, I. M. C. (2006) “Selective Removal of Heavy Metals from Industrial Wastewater Using Maghemite Nanoparticle: Performance and Mechanisms ”, J. environ. eng., 132(7), 709-715.
Hsieh, C.-H., Lo, S.-L., Kuan, W.-H. and Chen, C.-L. (2006) “Adsorption of Copper Ions onto Microwave Stabilized Heavy Metal Sludge ”, J. Hazard. Mater., 136(2), 338-344.
Ingham, A., Rodopoulos, M., Coulter, K., Rodopoulos, T., Subramanian, S. and McAuley, A. (2002) “Synthesis, Characterization and Reactivity of Some Macrobicyclic and Macrotricyclic Hetero-Clathrochelate Complexes ”, Coord. Chem. Rev., 233-234, 225-/271.
Jin, Y. and Zhang, J. (2006) “Microwave Sintering of Al,O-3,-TiC-TiN-Mo-Ni Composite Cermet”, Kovove Mater., 44(2), 107-111.
Jones. D.A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W. and Miles, N. J. (2002) “Microwave Heating Applications in Environmental Engineering - A Review”, Resour. Conserv. Recycl., 34, 75-90.
Jung, B. J. and Schobert, H. H. (1991) “Viscous Sintering of Coal Ashes .1. Relationships of Sinter Point And Sinter Strength to Particle-size and Composition”, Energ. Fuel, 5(4), 555-561.
Karamanov, A., Pelino, M., and Hreglich, A. (2003) “Sintered Glass-ceramics from Municipal Solid Waste-incinerator Fly Ashes—part I: The Influence of The Heating Rate on The Sinter-crystallisation”, J. Eur. Ceram. Soc., 23, 827-832
Karamanov, A., Aloisi, M. and Pelino, M. (2005) “Sintering Behaviour of A Glass Obtained from MSWI Ash”, J. Eur. Ceram. Soc., 25, 1531-1540.
Katsumata, H., Kaneco, S., Inomata, K., Itoh, K., Funasaka, K., Masuyama, K., Suzuki, T. Ohta and K. (2003) “Removal of Heavy Metals in Rinsing Wastewater from Plating Factory by Adsorption with Economical Viable Materials”, J. environ. manage., 69, 187-191.
Katsuura, H, Inoue, T, Hiraoka, M. and Sakai, S. (1996) “Full-Scale Plant Study on Fly Ash Treatment by The Acid Extraction Process”, Waste Manage., 16(5-6), 491-499.
Kawaguchi, M., Ishikawa, T. and Horio, M. (2003) “Manufacture of Artificial Aggregates from Construction Sludge by Sintering”, Kagaku Kogaku Ronbun., 29(1), 47-53.
Kingman, S. W. and Rowson, N. A. (1998) “Microwave Treatment of Minerals – A Review”, Minerals Engineering, 11(11), 1081-1087.
Ku, H. S., Siores, E., Taube, A. and Ball, J. A. R. (2002) “Productivity Improvement through The Use of Industrial Microwave Technologies”, Comput. Ind. Eng., 42, 281-290.
Lee, K. Y., Dearhouse, P. H. and Case, E. D. (1999) “Microwave Sintering of Alumina Using Four Aingle-cavity Modes”, J. Mater. Synth. Proces., 7(3), 159-166.
Lee, W. C., Liu, K. S. and Lin, I. N. (2001) “Microwave Sintering Pb(Zr0.52Ti0.48)O-3 Piezoelectric Ceramics” Ferroelectrics, 262(1-4), 1267-1272.
Lentz, D., Nickelt, N. and Willemsen, S. (2002) “Organometallic Chemistry of Fluorinated Allenes”, Chem. Eur. J., 8(5), 1205-1217.
Lidstrom, P., Tierney, J., Wathey, B. and Westman, J. (2001) “Microwave Assisted Organic Synthesis – A Review”, Tetrahedron, 57, 9225-9283.
Lin, S.- L., Lai, J. S. and Chian, E. S .K. (1995) “Modificatios of Sulfur Polymer Cement (SPC) Stabilization and Solidification (S/S) Process” Waste Manag., 15(5/6), 441-447.
Lin, I.-N., Lee, W.-C., Liu, K.-S., Cheng, H.-F. and Wu, M.-W. (2001) “On The Microwave Sintering Technology for Improving The Properties of Semiconducting Electronic Ceramics” J. Eur. Ceram. Soc., 21, 2085–2088.
Lu, H.-C., Chang, J.-E., Shih, P.-H. and Chiang, L.-C. (2008) “Stabilization of Copper Sludge by High-temperature CuFe2O4 Synthesis Process”, J. Hazard. Mater., 150, 504-509.
Makino, Y., Ohmae, T., Setsuhara, Y., Miyake, S. and Sano, S. (1999) “Sintering of Al2O3-ZrO2 Composites Using Millimeter-wave Radiation”, Key Eng. Mat., 2, 41-44.
Mayo, M. J. (1996) “Processing of Nanocrystalline Ceramics from Ultrafine Particles”, Int. Mater. Rev., 41(3), 85-115.
McGrath, D. (1998) “Use of Microwave Digestion for Estimation of Heavy Metal Content of Soils in A Geochemical Survey”, Talanta, 46, 439-448.
McKenzie, R. M. (1980) “The Adsorption of Lead and Other Heavy Metals on Oxides of Manganese and Iron”, Aust. J. Soil Res., 18, 61-73.
Menendez, J. A., Inguanzo, M. and Pis, J. J. (2002) “Microwave- Induced Pyrolysis of Sewage Sludge”, Water Res., 36, 3261-3264.
Menendez, J. A., Dominquez, M., Inguanzo, M. and Pis, J. J. (2005) “Microwave-induced Drying, Pyrolysis and Gasification (MWDPG) of Sewage Sludge: Vitrification of The Solid Residue” J. Anal. Appl. Pyrolysis, 74, 406–412.
Mester, Z., Angelone, M., Brunori, C., Cremisini, C., Muntau, H. and Morabito, R. (1999) “Digestion Methods for Analysis of Fly Ash Samples by Atomic Absorption Spectrometry”, Anal. Chim. Acta, 395, 157-163.
Minay, E. J., Boccaccini, A. R., Veronesi, P., Cannillo, V. and Leonelli, C. (2005) “Sintering of Metal Fibre Reinforced Glass Matrix Composites Using Microwave Radiation”, Adv. Appl. Ceram., 104(2), 49-54.
Nuchter, M., Muller, U., Ondruschka, B., Tied, A., and Lautenschlager, W. (2003) “Microwave-Assisted Chemical Reactions”, Chem. Eng. Technol., 26(12), 1207-1216.
Nzihou, A. and Sharrock, P. (2002) “Calcium Phosphate Stabilization of Fly Ash with Chloride Extraction”, Waste Manage., 22, 235-239.
Pavlova, V. and Sigg, L. (1988) “Adsorption of Trace Metals on Aluminium Oxide: A Simulation of Processes in Freshwater System by Close Approximation to Natural Conditions”, Wat. Res., 22(12), 1571-1575.
Plucknett, K. P. and Wilkinson, D. S. (1995) “Microstructural Characterization of A Microwave-sintered Silicon-Nitride Based Ceramic”, J. Mater. Res., 10(6), 1387-1396.
Poon, C. S., Chen, Z. Q. and Wai, O. W. H. (2001) “The Effect of Flow-through Leaching on The Diffusivity of Heavy Metals in Stabilized/solidified Wastes”, J. Hazard. Mater., 81(1-2), 179-192.
Qiao, X.C., Poon, C. S. and Cheeseman, C. R. (2006) “Transfer mechanisms of contaminants in cement-based stabilized/solidified wastes”, J. Hazard. Mater., 129(1-3), 290-296.
Ra, P. D., Brandon, D. and Schachter, L. (1999) “Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics”, Mat. Sci. Eng. A-Struct., 266(1-2), 211-220.
Rane, K. S., Verenkar, V. M. S., Pednekar, R. M. and Sawant, P. Y. (1999) “Hydrazine Method of Synthesis of γ-Fe2O3 Useful in Ferrites Preparation. Part III - Study of Hydrogen Iron Oxide Phase in γ-Fe2O3”, J. Mater. Sci., Mater. Electron., 10, 121-132.
Rodiger, K., Dreyer, K., Gerdes, T. and Willert-Porada, M. (1998) “Microwave Sintering of Hardmetals”, Int. J. Refrac. Metals Hard Mate., 16, 4009-416.
Roy, R., Agarwal, D., Chen, J. P. and Gedevanishvili, S. (1999) “Full Sintering of Powdered-metal Bodies in A Microwave Field”, Nature, 399, 668-670.
Salihoglu, G., Pinarli, V., Salihoglu, N. K. and Karaca, G. (2006) “Properties of Steel Foundry Electric Arc Furnace Dust Solidified/stabilized with Portland Cement”, J. Environ. Manage., 85(1), 190-197.
Sharma, A. K., Aravindhan, S. and Krishnamurthy, R. (2001) “Microwave Glazing of Alumina–titania Ceramic Composite Coatings”, Mate. Lett., 50, 295–301.
Stewart, S. J., Goya, G. F., Punte, G. and Mercader, R. C. (1997) “Phase Transformations in Fe-doped Cupric Oxide”, J. Phys. Chem. Solids, 58(1), 73-77.
Sures, B., Taraschewski, H. and Haug, C. (1995) “Determination of Trace Metals (Cd, Pb) in Fly Ash by Electrothermal Atomic Absorption Spectrometry after Microwave Digestion”, Anal. Chim. Acta, 311, 135-139.
Tai, H.-S. and Jou, C.-J. G. (1999) “Immobilization of Chromium- Contaminated Soil by Means of Microwave Energy”, J. Hazard. Mater., 65, 267-275.
Thostenson, E. T. and Chou, T.–W. (1999) “Microwave Processing: Fundamentals and Applications”, Composites: Part A, 30, 1055-1071.
Tianshu, Z., Hongmei, L., Huanxing, Z., Ruifang, Z. and Yusheng, S. (1996) “Synthesis and Gas-sensing Characteristics of High Thermostability γ-Fe2O3 Powder”, Sensors and Actuators B, 32, 181-184.
Timms, L. A., Westby, W., Prentice, C., Jaglin, D., Shatwell, R. A. and Binner, J. G. P. (2001) “Reducing Chemical Vapour Infiltration Time for Ceramic Matrix Composites”, J. Microsc.-oxfford., 201, 316-323.
Tsakaloudi, V., Papazoglou, E. and Zaspalis, V. T. (2004) “Microwave Firing of MnZn-Frrites”, Materials Science and Engineering B, 106, 289–294.
Ueno, T., Kinoshita, S., Setsuhara, Y., Makino, Y., Miyake, S., Sano, S. and Saito, H. (1999) “Millimeter-wave Sintering of Si3N4”, Key Eng. Mat., 2, 45-48.
Vileno, E., Ma, Y. Zhou, H. and Suib, S. L. (1998) “Facile Synthesis of Synthetic Todorokite (OMS-1), Co-Precipitation Reactions in The Presence of A Microwave Field”, Microporous and Mesoporous Materials, 20, 3-15.
Wainwright, P. J. and Cresswell, D. J. F. (2001) “Synthetic Aggregates from Combustion Ashes Using An Innovative rotary Kiln” Waste Manage., 21(3), 241-246.
Wu, C.-H., Lin, C.-F. and Horng, P.-Y. (2004) “Adsorption of Copper and Lead Ions onto Regenerated Sludge from a Water Treatment Plant”, J. Environ. Sci. Heal. A, 39(1), 237-252.
Wu, C.-H., Lin, C.-F. and Horng, P.-Y. (2004) “Regeneration and Reuse of Water Treatment Plant Sludge: Adsorbent for Cations”, J. Environ. Sci. Heal. A, 39(3), 717-728.
Xu, G. F., Olorunyolemi, T., Wilson, O. C., Lloyd, I. K. and Carmel, Y. (2002) “Microwave Sintering of High-density, High Thermal Conductivity AIN”, J. Mater. Res., 17(11), 2837-2845.
林宗曾(1993) “水泥固化/穩定化氧化銅之反應機制與溶出行為”博士論文,台灣大學環境工程學研究所。
王明光(2000) “土壤環境礦物學”,藝軒圖書出版社,93-140。
黃坤祥(2003) “粉末冶金學”,中華民國粉末冶金協會,137-166。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top