|
Agresti, A. (2002) Categorical data analysis. 2nd New York: John Wiley & Sons, Inc.
Akaho, S. (2001). A kernel method for canonical correlation analysis. International Meeting of Psychometric Society (IMPS2001).
Anderson, T. W. An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New York, 2003.
Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. J. Mach. Learning Res., 3, 1--48.
Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263--265.
Bartlett, M. S. (1947a). Multivariate analysis. Supp. J. Roy. Statist. Soc., 9, 176--197.
Bartlett, M. S. (1947b). The general canonical correlation distribution. Ann. Math. Statist., 18, 1--17.
Becker, T., and Knapp, M. (2004) Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet. Epidemiol., 27: 21--32.
Clayton, D. (1999) A generalization of the transmission/ disequilibrium test for uncertain-haplotype trans mission. Am. J. Hum. Genet., 65: 1170--1177.
Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273--279.
Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and OtherKernel-Based Learning Methods. Cambridge University Press, Cambridge, UK.
Dauxois, J. and Nkiet, G. M. (1997). Canonical analysis of two Euclidean subspaces and its applications. Linear Algebra Appl., 264, 355--388.
Dauxois, J. and Nkiet, G. M. (1998). Nonlinear canonical analysis and independence tests. Ann. Statist., 26, 1254--1278.
Dauxois, J. and Nkiet, G. M. (2002). Measure of association for Hilbert subspaces and some applications. J. Multivariate. Anal., 82, 263--298.
Dauxois, J., Nkiet, G. M. and Romain, Y. (2004). Canonical analysis relative to a closed subspace. Linear Algebra Appl., 388, 119--145.
Dauxois, J., Romain, Y. and Viguier, S. (1993). Comparison of two factor subspaces. J. Multivariate Anal., 44, 160--178.
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum likelihood from incomplete data via EM algorithm (with discussion) J. R. Statist. Soc. B, 39(1): 1--38.
Eubank, R., Hsing, T., (2006). Canonical correlation for stochastic processes. preprint. http://www.stat.osu.edu/~hsing/papers/CCpaper-rev1.pdf.
Falk, C. T. and Rubinstein, P. (1987) Haplotype relative risk: an easy reliable way to construct a proper control sample for risk calculation. Ann. Hum. Genet., 51: 227--233.
Gretton, A., Herbrich, R. and Smola, A. (2003). The kernel mutual information. Technical Report, MPI for Biological Cybernetics, Tuebingen,Germany.
Gretton, A., Herbrich, R., Smola, A., Bousquet, O. and Schölkopf, B. (2005). Kernel methods for measuring independence. J. Machine Learning Research, 6, 2075--2129.
Hardoon, D. R., Szedmak, S. and Shawe-Taylor, J. (2004). Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 16, 2639--2664.
Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference,and Prediction. Springer-Verlag, New York.
Horvath, S., Xu, X., Lake, S. L., Silverman, E. K., Weiss, S. T. and Laird, N. M. (2004) Family-based tests for association haplotypes with general phenotype data: application to asthma genetics. Genet. Epidemiol., 26: 61--69.
Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321--377.
Hsing, T., Liu, L.-Y., Brun, M. and Dougherty, E. R. (2005). The coefficient of intrinsic dependence. Pattern Recognition, 38, 623--636.
Huang, C. M., Lee, Y. J., Lin, D. K. J and Huang, S. Y. (2007). Model selection for support vector machines via uniform design. A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis, 52:335--346, 2007.
Huang, S. Y. and Hwnag, C. R. (2006). Kernel Fisher discriminant analysis in Gaussian reproducing kernel Hilbert spaces -Theory. Institute of Statistical Science, Academia Sinica, technical report. http://www.stat.sinica.edu.tw/syhuang/.
Huang, S. Y., Lee M. H, and Hsiao, C. K. (2007). Nonlinear measures of association with kernel canonical correlation analysis and applications. submitted.
Jensen, D. R. and Mayer, L. S. (1977). Some variational results and their applications in multiple inference. Ann. Statist., 5, 922--931.
Kuss, M. and Graepel, T. (2003). The geometry of kernel canonical correlation analysis. Technical report, Max Planck Institute for Biological Cybernetics, Germany.
Laird, N. M., Horvath, S. and Xu, X. (2000) Implementing a unified approach to family-based tests of association. Genet. Epidemiol., 19(Suppl 1): S36--S42.
Lee, Y. J. and Huang, S. Y. (2007). Reduced support vector machines: a statistical theory. IEEE Trans. Neural Networks, 18, 1--13.
Lee, Y. J. and Mangasarian, O. L. (2001). RSVM: reduced support vector machines. Proceeding 1st International Conference on Data Mining, SIAM.
Liang, L., Zöllner, S and Abecasis, G. R. (2007) Genome: a rapid coalescent-based whole genome simulator. Bioinformatics, 23: 1565--1567.
Newman, D. J., Hettich, S., Blake, C. L. and Merz, C. J. (1998). UCI Repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science.
Ott, J. (1989) Statistical properties of the haplotype relative risk. Genet. Epidemiol., 6: 127--130.
Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer.
Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M. and Poland, G. A. (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet., 70: 425--434.
Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond. MIT Press, Cambridge, MA.
Sham, P. (1998). Statistics in human genetics. Arnold, New York, N.Y.
Shannon, C. E. (1948) A mathematical theory of communication. Bell System Tech. J., 27: 379-423, 623--656.
Smola, A. and Schölkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In Proc. 17th International Conf. on Machine Learning, 911--918. Morgan Kaufmann, San Francisco, CA.
Snelson, E. and Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf and J. Platt, editors, Advances in Neural Information Processing Systems, 18, MIT Press, Cambridge, MA. Spielman, R. S., McGinnis, R. E. and Ewens, W. J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet., 52: 506--516.
Spielman, R. S. and Ewens, W. J. (1996). The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet., 59: 983--989.
Tzeng, J. Y., Devlin, B., Wasserman, L. and Roeder K. (2003) On the identification of disease mutations by the analysis of haplotype similarity and goodness of fit. Am. J. Hum. Genet., 72: 897--902.
Tzeng, J. Y. (2005) Evolutionary-based grouping of haplotypes in association analysis. Genet. Epidemiol., 28: 220--231.
Tzeng, J. Y., Wang, C. H., Kao, J. T., and Hsiao, C. K. (2006) Regression-based association analysis with clustered haplotypes using genotypes. Am. J. Hum. Genet., 78: 231--242.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.
Wang, J., Neskovic, P. and Cooper, L.N. (2005). Training data selection for support vector machines. In Lipo Wang, Ke Chen and Yew-Soon Ong, editors, Advances in Natural Computation: Proceedings, Part I, First International Conference, Lecture Notes in Computer Science 3610, 554--564, Springer-Verlag, Berlin.
Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, 13, 682--688, Cambridge, MA, MIT Press.
|