跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/05/31 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林盈蕙
研究生(外文):Ying-Hui Lin
論文名稱:後頂葉皮質區受損之中風病患於側向反應性姿勢控制能力之缺損以及給予提示對其控制能力之影響
論文名稱(外文):Reactive Postural Response to Lateral Perturbation in Patients with the Posterior Parietal Cortex Lesion: Deficits and Effects of Precues
指導教授:湯佩芳
指導教授(外文):Pei-Fang Tang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:122
中文關鍵詞:中風動作控制反應性姿勢控制能力後頂葉皮質區提示
外文關鍵詞:strokemotor controlreactive postural responseposterior parietal cortexcue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景與目的:反應性姿勢控制能力 (reactive postural control ability) 取決於感覺訊息的整合以及動作與姿勢的協調。近年研究發現輸入的感覺訊息會經大腦後頂葉皮質區 (posterior parietal cortex, PPC) 整合與注意後轉換為動作訊息,再傳至前動作皮質區 (premotor cortex),以利動作計畫與動作執行。因此可推測後頂葉皮質區損傷可能導致注意與姿勢控制能力的缺損。故本研究目的為探討後頂葉皮質區損傷是否造成中風病患站姿平衡能力缺損以及給予事先提示對患者的影響。
方法:9位大腦受損區包含後頂葉皮質區之中風病患 (PPC+組, 平均年齡= 60.8±13.9歲) 與9位大腦受損區不包含後頂葉皮質區之中風病患 (PPC-組, 平均年齡= 69.9±10.3歲) 參與本研究。另有9位年齡相符之健康受試者參與,為控制組 (Healthy組, 平均年齡= 67.9±13.7歲)。所有參與者須在受到由多方向牽拉儀 (Advance Instrument, Inc., Taipei, Taiwan) 產生之側向牽拉干擾 (lateral perturbation) 後,於儘量不移動雙腳的情況下,維持站立平衡。本實驗包含無提示與提示情境各6次牽拉測試 (trials)。在提示情境下,研究者於牽拉干擾前給予聽覺提示,使參與者可事先知道干擾方向。本實驗中分析反應姿勢肌活化模式、最早活化之反應姿勢肌潛伏時間 (onset latency)、施力反應時間 (reaction time)、到達施力峰值時間 (time-to-peak phase duration) 以及側向衝量 (total force impulse)。
結果:在無提示情境下,健康受試者以與牽拉方向同側邊之臀中肌 (gluteus medius) 與腓長肌 (peroneal longus) 為主要反應肌 (活化率分別為88.5%與73.1%),且大多以臀中肌最早反應 (反應姿勢肌潛伏時間為129.1毫秒)。兩組中風受試者受到向健側邊的牽拉干擾時反應模式與健康受試者相似;但受到向患側邊的牽拉干擾時,除患側之臀中肌與腓長肌外,健側臀中肌亦為主要反應姿勢肌之一。尤其在PPC+組受到向患側邊的牽拉干擾時,健側臀中肌之活化率 (40.0%) 趨近於患側之臀中肌 (56.0%) 與腓長肌 (48.0%),且為最早活化之姿勢反應肌 (反應姿勢肌潛伏時間為167.0毫秒)。至於反應姿勢肌潛伏時間分析結果發現,在無提示情境下受到向患側的牽拉干擾,PPC+組 (167.0毫秒) 的時間顯著長於Healthy (129.1毫秒) 與PPC- (136.3毫秒) 組 (Healthy組與PPC+組: p = .008; PPC-組與PPC+組: p = .039),但Healthy與PPC-組之間無顯著差異。此外,PPC+組於受到向患側干擾時之反應姿勢肌潛伏時間較受到向健側干擾時的 (124.8毫秒) 長 (p = .001)。而無論牽拉方向為何,三組的施力反應時間與到達施力峰值時間皆無差異 (p > .05)。側向衝量分析結果顯示,當受到向患側的牽拉干擾,兩組中風病患產生的衝量 (PPC-: 1019.4 體重百分比*毫秒; PPC+: 1152.4體重百分比*毫秒) 較健康成人 (1504.0體重百分比*毫秒) 小 (Healthy組與PPC-組: p = .004; Healthy組與PPC+組: p = .028)。給予提示後,PPC+組於受到向患側邊干擾時患側臀中肌的活化率顯著增加 (活化率為80.8%),且反應姿勢肌活化模式變成與健康成人的相似。而提示對於三組受試者之反應姿勢肌潛伏時間、到達施力峰值時間與側向衝量並無顯著影響 (p > .05),但可以加快健康成人的施力反應時間 (p = .035)
討論與結論:PPC+組的站立反應性姿勢控制能力較Healthy與PPC-組差,可能原因為感覺動作訊息轉換能力 (sensory-motor transformation) 缺損導致。此外,本研究中發現聽覺提示可改善後頂葉皮質區受損之中風病患姿勢肌反應策略,但並未改善其反應姿勢肌之潛伏時間及與時間相關之力學上的反應能力。顯示聽覺提示可能可提高後頂葉皮質區受損病患對輸入之感覺訊息的注意力、改善感覺動作訊息轉換能力或有助於計畫動作輸出之次序或相關姿勢肌,因而改善其反應策略。反應肌潛伏時間則依賴感覺輸入之快慢與感覺動作訊息轉換之速率,而與時間相關之力學表現除上述兩項外亦取決於反應肌產生力量之速率。後頂葉皮質區受損之中風病患可能並未因接收聽覺提示而增進其感覺動作整合與反應肌產生力量之速率,所以其姿勢反應上並未較快。未來研究仍須進一步探討其他感覺提示 (如視覺或觸覺) 對後頂葉皮質區受損之中風病患反應性姿勢控制能力之影響。
Background and Purpose─ Reactive postural control ability depends upon the integration of all sensory inputs and descending motor drives. Recent studies suggest that all sensory inputs are integrated and attended, and then are transformed into motor commands (sensory-motor transformation) in the posterior parietal cortex (PPC) for planning and executing movements. Therefore, it is expected that lesions over the PPC would cause deficits in attention and motor control. However, little empirical evidence has been provided regarding standing balance deficits and effects of precues in patients with the PPC lesion.
Methods─ Nine patients with stroke (mean age= 60.8±13.9yrs) with lesions involving the PPC region (PPC+ group), nine patients with stroke (mean age= 69.9±10.3yrs) with lesions not involving the PPC region (PPC- group) and nine healthy, age-matched adults (mean age= 67.9±13.7yrs) participated in this study (healthy group).
All participants were asked to maintain standing balance without stepping, if possible, after experiencing lateral pulling perturbation in the no-cue and cue conditions. There were 6 trials each in the no-cue and cue conditions. An auditory precue regarding the pulling direction was given to the participants in the cue condition. Postural muscle activation patterns, the earliest muscle onset latency (OLEarliest), reaction time (RT) of lateral force, time-to-peak phase duration (PDTTP) and total force impulse (IMPTotal) were analyzed to investigate the performance of each participant.
Results─ In the no-cue condition, the gluteus medius (GM) and peroneal longus (PL) muscles of the leg on the side ipsilateral to the pulling perturbation direction (GMIpsi and PLIpsi) were the predominant muscles generating postural responses in the healthy group (firing rate: 88.5% and 73.1%, respectively). Similar results were also found when both stroke groups responded to perturbation towards the unaffected side. When responding to perturbation towards the affected side, the GM of the leg contralateral to the perturbation direction (GMContra) became one of the predominant muscles. Half subjects of the PPC- relied on co-contraction of GMIpsi and GMContra for reactive responses. And one-third of the subjects in the PPC+ groups relied on GMContra in response to perturbation. Compared to the healthy (OLEarliest = 129.1 ms) and PPC- (OLEarliest = 136.3 ms) groups, the PPC+ group showed longer OLEarliest (167.0 ms) while responding to perturbation towards the affected side (healthy vs. PPC+: p = .008; PPC- vs. PPC+: p = .039), but there was no difference in OLEarliest between the healthy and PPC- groups. In addition, the PPC+ group, but not the PPC- group, showed significantly longer OLEarliest when responding to perturbation towards the affected side (167.0 ms) than unaffected side (124.8 ms) (p = .001). For the RT and PDTTP, there was no group, neither direction, main effect. For the IMPTotal, both stroke groups generated smaller IMPTotal than the healthy group after a pull to the affected side (healthy vs. PPC-: p = .004; healthy vs. PPC+: p = .028). After cuing, the muscle activation patterns of the PPC+ group in response to a pull to the affected side became similar to those of the healthy group, and the healthy group showed shorter RT (p = .035). There were no significant effects of the auditory cue on OLEarliest, PDTTP and IMPTotal (p > .05) in this study.
Discussion and Conclusions─ The PPC+ group showed the poorest reactive postural responses to lateral pulls among these three groups, which may be due to their deficits of sensory-motor transformation. Provision of a prior auditory cue seems to improve the construction or selection of proper postural strategy, but not the time needed to generate sufficient muscle or force responses, in patients with the PPC lesion. These temporal parameters may be determined by how fast the patients could process and integrate all sensory information, how fast they could perform the sensory-motor transformation and how fast they could generate force necessary for postural responses. Our auditory cue did not seem to improve the rate of information processing, the sensory-motor transformation and force generation of the PPC+ subjects. Further studies are required to investigate whether precue of other forms, such as visual or tactile cues, would effectively improve reactive postural responses of these patients.
TABLE OF CONTENTS
口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT vi
LIST OF FIGURES xii
LIST OF TABLES xiii
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Purposes 3
1.3 Terms and Definitions of Variables 4
1.3.1 Terms 4
1.3.2 Definitions of independent variables 6
1.3.3 Definitions of dependent variables 7
1.4 Research Questions and Hypotheses 8
1.3.1 Question 1 and hypotheses 8
1.3.2 Question 2 and hypotheses 10
1.5 Research Significance 13
CHAPTER 2 LITERATURE REVIEW 14
2.1 The Roles of the Posterior Parietal Cortex (PPC) in Attention and Motor Control 14
2.1.1 The role of the PPC in attention 15
2.1.2 The role of the PPC in sensory-motor transformation 17
2.1.3 The role of the PPC in motor intention 19
2.1.4 Summary 20
2.2 Attention and Motor Deficits in Patients with the PPC Lesion 21
2.2.1 Neglect syndrome 21
2.2.2 Attentional deficits in detecting visual and tactile stimuli 22
2.2.3 Deficits in sensory-motor transformation for reaching 24
2.2.4 Deficits in balance control 27
2.2.5 Summary 28
2.3 Reactive Postural Responses of Healthy Adults and Patients with Stroke in Stance 29
2.3.1 Definition of reactive postural responses 29
2.3.2 Two primary classes of reactive postural strategies 30
2.3.3 Variables commonly measured to investigate reactive postural responses 31
2.3.4 Effects of impaired sensory systems on reactive postural responses 33
2.3.5 Deficits and effects of precues in reactive postural responses of the stoke population 35
2.3.6 Summary 37
CHAPTER 3 METHODS 39
3.1 Participants 39
3.2 Clinical Assessment Tools 40
3.3 Laboratory Experiment Instruments 44
3.4 Procedures 47
3.5 Data Analyses 48
3.6 Statistics 49
CHAPTER 4 RESULTS 51
4.1 Participants 51
4.2 Changes in Lateral Force during Responding to the Pulling Perturbation 51
4.3 In the No-Cue Condition 52
4.3.1 Muscle firing rate and muscle activation patterns 52
4.3.2 Earliest muscle onset latency (OLEarliest) 54
4.3.3 Reaction time (RT) 56
4.3.4 Time-to-Peak phase duration (PDTTP) 57
4.3.5 Total force impulse (IMPTotal) 57
4.3.6 Summary 58
4.4 In the Cue Condition 59
4.4.1 Muscle firing rate and muscle activation patterns 59
4.4.2 Earliest muscle onset latency (OLEarliest) 61
4.4.3 Reaction time (RT) 62
4.4.4 Time-to-peak phase duration (PDTTP) 62
4.4.5 Total force impulse (IMPTotal) 62
4.4.6 Summary 63
CHAPTER 5 DISCUSSIONS 64
5.1 Deficits of Reactive Postural Responses in Patients with the PPC Lesion 64
5.1.1 Muscle activation patterns 64
5.1.2 Earliest muscle onset latency 66
5.1.3 Reaction time, time-to-peak phase duration and force impulse 67
5.2 Effects of Precues on Reactive Postural Responses in Each Group 69
5.2.1 Muscle activation patterns 70
5.2.2 Earliest muscle onset latency 72
5.2.3 Reaction time, time-to-peak phase duration and force impulse 73
5.3 Limitations of the Present Study 75
5.4 Further Studies 76
CHAPTER 6 CONCLUSIONS 77
REFERENCES 78
APPENDICES 101
APPENDIX A: Subject Informed Consent 101
APPENDIX B: Subjects Information Records for Patients with Stroke 108
APPENDIX C: Subject Information Records for Healthy Adults 110
APPENDIX D: The Fugl-Meyer Scale 112
APPENDIX E: The Manual Muscle Test 114
APPENDIX F: The Berg Balance Scale 115
APPENDIX G: The Mini-Mental State Examination 117
APPENDIX H: The Backward Digit Span 118
APPENDIX I: The Line Bisection Tet 119
APPENDIX J: The Star Cancellation Test 120
APPENDIX K: The Copying Test 121
APPENDIX L: The Karnath’s Contraversive Pushing 122
1.Allum JH, Pfaltz CR. Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp Brain Res 1985;58:82-94.
2.Andersen RA, Snyder LH, Bradley DC, Xing DC. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 1997;20:303-30.
3.Badke MB, Duncan PW, Di Fabio RP. Influence of prior knowledge on automatic and voluntary postural adjustments in healthy and hemiplegic subjects. Phys Ther 1987;67:1495-500.
4.Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 2003;13:1009-22.
5.Behrmann M, Meegan DV. Visuomotor processing in unilateral neglect. Consciousness & Cogn 1998;7:381-409.
6.Berg K, Wood-Dauphinee S, Williams JI, Gayton D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother Can 1989;41:304-11.
7.Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehab Med 1995;27:27-36.
8.Berg KO, Maki BE, Williams JI, Holliday PJ, Wood-Dauphinee SL. Clinical and laboratory measures of postural balance in an elderly population. Arch Phys Med Rehabil 1992;73:1073-80.
9.Berglund K, Fugl-Meyer AR. Upper extremity function in hemiplegia. A cross-validation study of two assessment methods. Scand J Rehab Med 1986;18:155-7.
10.Bisiach E, Perani D, Vallar G, Berti A. Unilateral neglect: personal and extra-personal. Neuropsychologia 1986;24:759-67.
11.Bloem BR, Allum JH, Carpenter MG, Honegger F. Is lower leg proprioception essential for triggering human automatic postural responses? Exp Brain Res 2000;130:375-91.
12.Buneo CA, Jarvis MR, Batista AP, Andersen RA. Direct visuomotor transformations for reaching. Nature 2002;416:632-6.
13.Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 2006;44:2594-606.
14.Burleigh AL, Horak FB, Malouin F. Modification of postural responses and step initiation: Evidence for goal-directed postural interactions. J Neurophysiol 1994;72:2892-902.
15.Burleigh A, Horak F. Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation. J Neurophysiol 1996;75:1619-28.
16.Corbetta M, Kincade JM, Ollinger JM, Shulman GL. Volintary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 2000;3:292-7.
17.Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 2005;8:1603-10.
18.Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002;3:201-15.
19.Danckert J, Ferber S. Revisiting unilateral neglect. Neuropsychologia 2006;44:987-1006.
20.Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol 1997;78:977-91.
21.Della-Maggiore V, Malfait N, Ostry DJ, Paus T. Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J Neurosci 2004;24:9971-6.
22.Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 1999;2:563-7.
23.Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST. Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 2001;21:2919-28.
24.Dickstein R, Peterka RJ, Horak FB. Effects of light fingertip touch on postural responses in subjects with diabetic neuropathy. J Neurol Neurosurg Psychiatry 2003;74:620-6.
25.Diener HC, Horak F, Stelmach G, Guschlbauer B, Dichgans J. Direction and amplitude precuing has no effect on automatic posture responses. Exp Brain Res 1991;84:219-23.
26.Downar J, Crawley A, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat neurosci 2000;3:277-83.
27.Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983;63:1606-10.
28.Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998;36:37-43.
29.Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol 2005;15:626-31.
30.Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-98.
31.Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehab Med 1975;7:13-31.
32.Geeraerts S, Lafosse C, Vandenbussche E, Verfaillie K. A psychophysical study of visual extinction: ipsilesional distractor interference with contralesional orientation thresholds in visual hemineglect patients. Neuropsychologia 2005;43:530-41.
33.Geurts AC, de HM, van N, I, Duysens J. A review of standing balance recovery from stroke. Gait & Posture 2005;22:267-81.
34.Gilles M, Wing AM, Kirker SG. Lateral balance organisation in human stance in response to a random or predictable perturbation. Exp Brain Res 1999;124:137-44
35.Goodale MA, Westwood DA. An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 2004 April;14:203-11.
36.Gruneberg C, Duysens J, Honegger F, Allum JH. Spatio-temporal separation of roll and pitch balance-correcting commands in humans. J Neurophysiol 2005;94:3143-58.
37.Hall CD, Woollacott MH, Jensen JL. Age-related changes in rate and magnitude of ankle torque development: implications for balance control. J Gerontol A Biol Sci Med Sci 1999;54:M507-M513.
38.Halligan PW, Marshall JC, Wade DT. Visuospatial neglect: underlying factors and test sensitivity. Lancet 1989;2:908-11.
39.Heilman KM, Valenstein E. Mechanisms underlying hemispatial neglect. Ann Neurol 1979;5:166-70.
40.Hesse MD, Thiel CM, Stephan KE, Fink GR. The left parietal cortex and motor intention: an event-related functional magnetic resonance imaging study. Neuroscience 2006;140:1209-21.
41.Hillis AE, Newhart M, Heidler J, Barker PB, Herskovits EH, Degaonkar M. Anatomy of spatial attention: Insights from perfusion imaging and hemispatial neglect in acute stroke. J Neurosci 2005;23:3161-7.
42.Holt RR, Simpson D, Jenner JR, Kirker SG, Wing AM. Ground reaction force after a sideways push as a measure of balance in recovery from stroke. Clin Rehabil 2000;14:88-95.
43.Horak FB, Nashner LM, Diener HC. Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 1990;82:167-77.
44.Horak FB., Hlavacka F, Shupert CL. Vestibular-somatosensory interactions for human posture. In: Mergner T, Hlavacka F, editors. Multisensory control of posture.New York: Plenum press; 1995. p. 237-42.
45.Horak FB, Henry SM, Shumway-Cook A. Postural perturbations: new insights for treatment of balance disorders. Phys Ther 1997;77:517-33
46.Husain M, Mattingley JB, Rorden C, Kennard C, Driver J. Distingushing sensory and motor biases in parietal and frontal negelect. Brain 2000;123:1643-59.
47.Iacoboni M. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia 2006;44:2691-9.
48.Ikai T, Kamikubo T, Takehara I, Nishi M, Miyano S. Dynamic postural control in patients with hemiparesis. Am J Phys Med Rehabil 2003;82:463-9.
49.Inglis JT, Horak FB, Shupert CL, Jones-Rycewicz C. The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Exp Brain Res 1994;101:159-64.
50.Inglis JT, Macpherson JM. Bilateral labyrinthectomy in the cat: effects on the postural response to translation. J Neurophysiol 1995;73:1181-91.
51.Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Fourth ed. McGraw-Hill Companies; 2000.
52.Karnath HO, Ferber S, Himmelbach M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 2001;411:950-3.
53.Karnath HO, Himmelbach M, Rorden C. The subcorticol anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain 2002;125:350-60.
54.Karnath HO, Ferber S, Dichgans J. The neural representation of postural control in humans. Proc Natl Acad Sci U S A 2000;97:13931-6.
55.Kirker SG, Jenner JR, Simpson DS, Wing AM. Changing patterns of postural hip muscle activity during recovery from stroke. Clin Rehabil 2000;14:618-26.
56.Lafosse C, Kerckhofs E, Troch M, Vereeck L, Van HG, Moeremans M, Broeckx J, Vandenbussche E. Contraversive pushing and inattention of the contralesional hemispace. J Clin Exp Neuropsychol 2005;27:460-84.
57.Lee BH, Kang SJ, Park JM, Son Y, Lee KH, Adair JC, Heilman KM, Na DL. The Character-line Bisection Task: a new test for hemispatial neglect. Neuropsychologia 2004;42:1715-24.
58.Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther 1997;77:488-507.
59.Malhotra P, Coulthard E, Husain M. Hemispatial neglect, balance and eye-movement control. Curr Opin Neurol 2006;19:14-20.
60.Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O. Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol 1989;44:M118-M127.
61.Marigold DS, Eng JJ. Altered timing of postural reflexes contributes to falling in persons with chronic stroke. Exp Brain Res 2006;171:459-68.
62.Mattingley JB, Husain M, Rorden C, Kennard C, Driver J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 1998;392:179-82.
63.McChesney JW, Sveistrup H, Woollacott MH. Influence of auditory precuing on automatic postural responses. Exp Brain Res 1996;108:315-20.
64.McChesney JW, Woollacott MH. The effect of age-related declines in proprioception and total knee replacement on postural control. J Gerontol A Biol Sci Med Sci 2000;55:M658-M666.
65.McDowd JM, Filion DL, Pohl PS, Richards LG, Stiers W. Attentional abilities and functional outcomes following stroke. J Gerontol B Psychol Sci Soc Sci 2003;58:P45-P53.
66.Metcalfe JS, McDowell K, Chang TY, Chen LC, Jeka JJ, Clark JE. Development of somatosensory-motor integration: an event-related analysis of infant posture in the first year of independent walking. Dev Psychobiol 2005;46:19-35.
67.Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech 2005;20:607-16.
68.Muggleton NG, Postma P, Moutsopoulou K, Nimmo-Smith I, Marcel A, Walsh V. TMS over right posterior parietal cortex induces neglect in a scene-based frame of reference. Neuropsychologia 2006;44:1222-9.
69.Nakata H, Yabe K. Automatic postural response systems in individuals with congenital total blindness. Gait & Posture 2001;14:36-43.
70.Ogden JA. Contralesional neglect of constructed visual images in right and left brain-damaged patients. Neuropsychologia 1985;23:273-7.
71.Ota HM, Fujii TM, Suzuki KM, Fukatsu RM, Yamadori AM. Dissociation of body-centered and stimulus-centered representations in unilateral neglect. Neurology 2001;57:2064-9.
72.Pedersen PM, Wandel A, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Ipsilateral pushing in stroke: Incidence, relation to neuropsychological symptoms, and impact on rehabilitation. The copenhagen stroke study. Arch Phys Med Rehabil 1996;77:25-8.
73.Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR. Parietal updating of limb posture: An event-related fMRI study. Neuropsychologia 2006;44:2685-90.
74.Perennou DA, Amblard B, Laassel eM, Benaim C, Herisson C, Pelissier J. Understanding the pusher behavior of some stroke patients with spatial deficits: a pilot study. Arch Phys Med Rehabil 2002;83:570-5.
75.Perennou DA, Leblond C, Amblard B, Micallef JP, Herisson C, Pelissier JY. Transcutaneous electric nerve stimulation reduces neglect-related postural instability after stroke. Arch Phys Med Rehabil 2001;82:440-8.
76.Perennou DA, Leblond C, Amblard B, Micallef JP, Rouget E, Pelissier J. The polymodal sensory cortex is crucial for controlling lateral postural stability: evidence from stroke patients. Brain Res Bull 2000;53:359-65.
77.Perennou DA. Postural disorders and spatial neglect in stroke patients: A strong association. Restor Neurol Neurosci. 2006;24:319-334.
78.Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y. An ''automatic pilot'' for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 2000;3:729-36.
79.Poole JL, Whitney SL. Motor assessment scale for stroke patients: concurrent validity and interrater reliability. Arch Phys Med Rehabil 1988;69:195-7.
80.Posner M, Boies S. Components of attention. Psychol Rev 1971;78:391-408.
81.Posner MI, Walker JA, Friedrich FJ, Rafal RD. Effects of parietal injury on covert orienting of attention. J Neurosci 1984;47:1863-74.
82.Praamstra P, Boutsen L, Humphreys GW. Frontoparietal control of spatial attention and motor intention in human EEG. J Neurophysiol 2005;94:764-74.
83.Redding GM, Wallace B. Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 2006;44:1-20.
84.Rietdyk S, Patla AE, Winter DA, Isgac MG, Little CE. Balance recovery from medio-lateral perturbations of the upper body during standing. J Biomech 1999;32:1149-58.
85.Roden-Jullig A, Britton M, Gustafsson C, Fugl-Meyer A. Validation of four scales for the acute stage of stroke. J Intern Med 1994;236:125-36.
86.Rogers MW, Hedman LD, Pai YC. Kinetic analysis of dynamic transitions in stance support accompanying voluntary leg knee flexion movements in hemiparetiv adults. Arch Phys Med Rehabil 1993;74:19-25.
87.Rogers MW, Hedman LD, Johnson ME, Cain TD, Hanke TA. Lateral stability during forward-induced stepping for dynamic balance recovery in young and older adults. J Gerontol A Biol Sci Med Sci 2001;56:M589-M594.
88.Rorden C, Berger MF, Karnath HO. Disturbed line bisection is associated with posterior brain lesions. Brain Res 2006;1080:17-25.
89.Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. Gait & Posture 1999;10:161-70.
90.Rushworth MFS, Johansen-Berg H, Gobel SM, Devlin JT. The left parietal and premotor cortices: Motor attention amd selection. Neuroimage 2003;20:S89-S100.
91.Rushworth MFS, Johansen-Berg H, Young SA. Parietal cortex and spatial-postural transformation during arm movements. J Neurophysiol 1998;79:478-82.
92.Rushworth MFS, Nixon PD, Passingham RE. Parietal cortex and movement. II. Spatial representation. Exp Brain Res 1997;117:311-23.
93.Rushworth MFS, Nixon PD, Passingham RE. Parietal cortex and movement. I. Movement selection and reaching. Exp Brain Res 1997;117:292-310.
94.Schenkenberg T, Bradford DC, Ajax ET. Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology 1980;30:509-17.
95.Seal J, Gross C, Bioulac B. Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb. Brain Res 1982;250:229-43.
96.Shumway-Cook A, Woollacott MH. Motor Control: Theory and Pratical Applications. Second ed. Philadelphia: Lippincott Williams & Wilkins; 2001.
97.Smania N, Martini MC, Gambina G, Tomelleri G, Palamara A, Natale E, Marzi CA. The spatial distribution of visual attention in hemineglect and extinction patients. Brain 1998;121:1759-70.
98.Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature 1997;386:167-70.
99.Snyder LH, Batista AP Andersen RA. Change in motor paln, without a change in the spatal locus of attention, modulates activity in the posterior parietal cortex. J Neurophysiol 1998;79:2814-9.
100.Stapleton T, Ashburn A, Stack E. A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clin Rehabil 2001;15:437-44.
101.Stelnmetz PN, Roy A, Fltzgerald PJ, Hsiao SS, Johnson KO, Nlebur E. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 2000;404:187-90.
102.Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol 2006;101:420-9.
103.Tilikete C, Rode G, Rossetti Y, Pichon J, Li L, Boisson D. Prism adaptation to rightward optical deviation improves postural imbalance in left-hemiparetic patients. Curr Biol 2001;11:524-8.
104.Thoenissen D, Zilles K, Toni I. Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 2002;22:9024-34.
105.Toni I, Thoenissen D, Zilles K. Movement preparation and motor intention. Neuroimage 2001;14:S110-S117.
106.Tokuno CD and Eng JJ. Gait initiation is dependent on the function of the paretic trailing limb in individuals with stroke. Gait&Posture 2006;24:424-428.
107.Valenza N, Seghier ML, Schwartz S, Lazeyras F, Vuilleumier P. Tactile awareness and limb position in neglect: functional magnetic resonance imaging. Ann Neurol 2004;55:139-43.
108.van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients. Stroke 1999;30:2369-75.
109.Vandenberghe R, Geeraerts S, Molenberghs P, Lafosse C, Vandenbulcke M, Peeters K, Peeters R, Van HP, Orban GA. Attentional responses to unattended stimuli in human parietal cortex. Brain 2005;128:2843-57.
110.Wee JYM, Hopman WM. Stroke impairment predictors of discharge function, length of stay, and discharge destination in stroke rehabilitation. Am J Phys Med Rehabil 2005;84:604-12.
111.Wen HM, Mok VC, Fan YH, Lam WW, Tang WK, Wong A, Huang RX, Wong KS. Effect of white matter changes on cognitive impairment in patients with lacunar infarcts. Stroke 2004;35:1826-30.
112.Wing AM, Gooodrich S, Virji-Babul N, Jenner JR, Glapp S. Balance evaluation in hemiparetic stroke patients using lateral forces applied to the hip. Arch Phys Med Rehabil 1993;74:292-9.
113.Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 1997;20:25-42.
114.Wolpert DM, Goodbody SJ, Husain M. Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1998;1:529-33.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top