(3.235.236.13) 您好!臺灣時間:2021/05/15 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林千農
研究生(外文):Chien-nung Lin
論文名稱:根據COI進行貨物擺放並考慮倉儲系統內的行走時間分析
論文名稱(外文):Travel time analysis with COI-based storage policies in low-level picker-to-part system
指導教授:潘昭賢潘昭賢引用關係
指導教授(外文):Chao-Hsiew Pan
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:44
中文關鍵詞:揀貨作業批量訂單行走時間訂單體積指標
外文關鍵詞:order pickingorder batchingtravel timecube-per-order index (COI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是在兩個撿貨區的倉儲系統下提出一個檢貨時間的評估模式。揀貨人員根據訂單進行貨物揀取而各貨物的擺放是根據訂單體積指標(Cube-Per-Order Index; COI)為基礎,並利用最少的儲存空間達到最小化行走距離之目的,進而達到揀貨績效的提升。本論文先推導出行走時間的一、二階動差並考量允許訂單批量處理的情況下求得平均揀貨時間。此外,本論文也利用eM-Plant模擬軟體建構倉儲模式,並進行模擬測試,並探討最佳訂單批量及揀貨路徑中所運用的COI策略各項參數分析。
This thesis presents a throughput evaluation model in a low-level picker-to-part system, which is a 2-block warehouse. The order-picker retrieves items in the tour according orders and assumed that items are assigned to storage location on the basis of the cube-per-order index (COI) rule. Adopt return policy and obtain the first and second moments of the order-picker’s travel time. Then we consider order batching problem in the warehouse and assume that orders arrive according to a Poisson process. Apply these moments to estimate the average throughput time. The results generated by the model are compared and validated via simulation which modeled by software eM-Plant. Furthermore, the effects of batch size, storage strategy on the travel distance are discussed in the paper.
摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
CONTENTS IV
TABLE INDEX V
FIGURE INDEX VI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
CHAPTER 3 FRAMWORK AND TRAVEL TIME ANALYSIS 8
3.1 The Warehouse Model 8
3.1.1 Storage Strategy 8
3.1.2 Warehouse System 10
3.2 Notation 11
3.3 Travel Time Estimation 12
3.3.1 Occupancy Problem 12
3.3.2 First Moment of Travel Time 13
3.3.3 Second Moments of Travel Time 16
CHAPTER 4 THE QUEUE MODEL FOR WAREHOUSE 19
4.1 Service Time Analysis 19
4.2 Throughput Time Analysis for Ek/G/1 Queueing Model 22
CHAPTER 5 PERFORMANCE EVALUATION of ROUTING POLICIES 24
5.1 Description of The Warehouse Layout 24
5.2 Distance Evaluation of The Within Aisle 25
5.3 Computation Result 26
5.4 The Simulation Model 28
5.5 Results of Simulation 28
CHAPTER 6 CONCLUSION 31
APPENDIX 32
REFRENCES 42
[1]Bartholdi, J.J. and Hankman, S. T., 2007, Warehouse & distribution science. Available on line at: http://www.tli.gatech.edu/research/warehousing/
[2]Bender, Paul S., “Mathematical Modeling of the 20/80rule: theory and practice.” Journal of business Logistics, Vol. 2, 139-157.
[3]Caron, F., Marchet, G., and Perego, A., “Routing policies and COI-based storage policies in picker-to-part systems,” International Journal of Production Economics, Vol. 36, (1998), 713-732.
[4]Caron, F., Marchet, G., and Perego, A., “Optimal layout in low-level picker-to-part systems,” International Journal of Production Economics, Vol. 38, (2000), 101-117.
[5]Chew, E. P. and Tang, L. C., “Travel time analysis for general item location assignment in a rectangular warehouse.” European Journal of Operational Research, Vol. 112, (1999) , 582-597.
[6]Coyle, J. J., Bardi, E. J., and Langley, C. J., The Management of Business Logistics, St. Paul, MN: West, 1996.
[7]De Koster, R., Le-Duc, T., “Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse” International Journal of Production Research, Vol. 43, (2005) , 3561-3581
[8]De Koster, R., Le-Duc, T. and Roodbergen, K. J., ”Design and control of warehouse order picking: A literature review.” European Journal of Operational Research, Vol. 182, (2007) , 481-501.
[9]De Koster, R., Le-Duc, T., “Travel time estimation and order batching in a 2-block warehouse.” European Journal of Operational Research, Vol. 176, (2007) , 374-388.
[10]Frazelle, E. H. and Sharp, G. P., “Correlated assignment strategy can improve any order-picking operation.” Industrial Engineering, Vol. 21, (1989), 33-37.
[11]G.., Petersen Charles, and Aase Gerald, “A comparison of picking, storage, and routing policies in manual order picking.” International Journal of Production Economics, Vol. 92, (2004), 11-19
[12]Gibson, D. R., and Sharp, G. P., “Order Batching Procedures,” European Journal of Operational Research, Vol. 58, (1992), 57-67.
[13]Goetschalckx, M., and Ratliff, H. D., “Efficient Algorithm to Cluster Order Picking Items in a Wide Aisle.” Engineering Costs and Production Economics, Vol. 13, (1988) , 263-271.
[14]Hall, R. W., “Distance approximation for routing manual pickers in warehouse.” IIE Transactions , Vol. 25 , (1993) , 77-87.
[15]Heskett, J. L., “Cube-Per-Order Index – A Key to Warehouse Stock Location,” Transportation and distribution Management, Vol. 3, (1963), 27-31.
[16]Hwang, H., Kim, D. G., “Order-batching heuristics based on cluster analysis in a low-level picker-to-part warehousing system” International Journal of Production Research, Vol. 43, (2005), 3657-3670.
[17]Hwang, H., Oh, Y. H., and Cha, C. N., “An evaluation of routing policies for order-picking operations in low-level picker-to-part system, International Journal of Production Research, Vol. 42, 3873-3889.
[18]Jarvis, J. M. and McDowell, E. D., “Optimal product layout in an order picking warehouse,” IIE Transactions, Vol. 23, (1991), 93-102.
[19]Johnson, N. L., and Kotz, S., Urn Models and Their Application, Wiley, New York, 1977.
[20]Kallina, C., and Lynn J., “Application of the Cube-Per-Order Index Rule for Stock Location in Distribution Warehouse,” Interfaces, Vol. 7, (1976), 37-46.
[21]Petersen II, C. G. and Schmenner, R. W., “An evaluation of routing policies in an order picking operation,” Decision Sciences, Vol. 30, (1999),481-501.
[22]Ratliff, H. Donald, and Rosenthal, Arnon S., “Order-Picking in a Rectangular Warehouse: A Solvable Case of The Traveling Salesman Problem.” Operations Research, Vol. 31, (1983), 507-521.
[23]Roodbergen, K. J. and De Koster, R., 2001a, Routing methods for warehouse with multiple cross aisles. International Journal of Production Research, 39, 1865-1883.
[24]Sakagewa, H., “An approximation formula ” Annals Institute of Statistical Mathematics, Vol. 29, (1977), 67-75.
[25]Tompkins, J. A., White, J. A., Bozer, Y. A. Frazelle, E. H. and Tanchoco, J. M. A., 2003, Facilities Planning. New York: John Wiley.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊