跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周安琪
研究生(外文):Angel Setyawati Djiuardi
論文名稱:反應性微膠顆粒之合成及其對苯乙烯/不飽和聚酯/反應性微膠顆粒三成份系統之體積收縮、內部可染色性、聚合固化樣品微觀結構及機械性質之研究
論文名稱(外文):Synthesis of Reactive Microgels and Their Effects on the Volume Shrinkage, Internal Pigmentability, Cured Sample Morphology, and Mechanical Properties for Styrene/Unsaturated Polyester/Reactive Microgels Ternary System
指導教授:黃延吉
指導教授(外文):Yan-Jyi Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:222
中文關鍵詞:不飽和聚酯體積收縮特性反應性微膠顆粒
外文關鍵詞:volume shrinkageunsaturated polyesterreactive microgel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
合成奈米級和次微米級的反應性微膠體粒子的特性是在結構中有不飽和的C=C鍵存在,而它們對三元系統的可混性、體積收縮特性、內部的染色能力、治療樣品型態、機械性質已被完成。

乳化聚合反應是用在合成反應性微膠體粒子。反應性微膠體粒子的不飽和C=C鍵數目可用傅立葉轉換紅外光光譜(FTIR)來量測。體積收縮可用密度方法來量測。其樣品型態可用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM)來觀察。St/UP/RM三元系統的機械性質是用一般的測試機器和衝擊測試機來量測。

體積收縮的變化在不同UP基質下,其RM加成顯示不同的結果,它是根據三元系統的不相容性來決定。RM的最佳型態和尺寸是提供反應性微膠體粒子和樹酯基質間的充分不相容性。即使達到一個可接受的體積收縮變化
The synthesis of nano-scale and submicron-scale of reactive microgel particles with characterization of the unsaturated C=C bonds in the structure and the investigation of their effects on the miscibility, volume shrinkage characteristics, internal pigmentability, cured sample morphology, and mechanical properties for styrene (St)/Unsaturated Polyester (UP)/reactive microgel (RM) ternary system have been carried out.
Emulsion polymerization was used to synthesize the reactive microgel particles. The number of unsaturated C=C bonds in the reactive microgel particles were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The volume shrinkage was measured by density method. The cured sample morphology was observed by Optical Microscope (OM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Mechanical properties of the St/UP/RM ternary system were investigated by using the universal testing machine and impact tester.
The addition of RM reveals different results in the reduction of volume shrinkage for different UP matrix, which is due to the incompatibility of the ternary system. The optimum type and size of RM is needed to give sufficient incompatibility between the reactive microgel particles and the resin matrices. Thus an acceptable volume shrinkage reduction could be achieved.
ACKNOWLEDGEMENT I
CONTENTS II
LIST OF FIGURE VII
LIST OF TABLE XVIII
ABSTRACT XXI

CHAPTER I INTRODUCTION 1

CHAPTER II LITERATURE OVERVIEW
2.1 Unsaturated Polyester 3
2.2 Crosslinking Copolymerization of Styrene and Unsaturated Polyester 5
2.3 Curing of Unsaturated Polyester Resins 8
2.4 Curing of Low-Shrink Unsaturated Polyester Resins 9
2.5 Mechanical Properties of Unsaturated Polyester after Curing 10
2.6 Reactive Microgel 11
2.7 Vinyl Ester Resins 15

CHAPTER III EXPERIMENTAL
3.1 Materials 18
3.1.1 Styrene 18
3.1.2 Unsaturated Polyester 18
3.1.3 Vinyl Ester Resins 19
3.1.4 Initiators 20
3.1.4.1 Potassium persulfate (KPS) 20
3.1.4.2 Tert-butyl peroxybenzoate (TBPB) 21
3.1.5 Surfactant 21
3.1.6 Co-surfactant 21
3.1.7 Potassium bromide (KBr) 21
3.1.8 Osmium tetroxide 21
3.1.9 Dichloromethane 22
3.1.10 Pigment 22
3.1.11 Deionized water 22
3.2 Instrumentation 22
3.2.1 Reactor, 2L 5 neck reactor 22
3.2.2 Waterbath, FIRSTEK B-206 22
3.2.3 Dynamic Light Scattering, DLS, Photal OTSUKA ELECTRONICS LPA-3100 22
3.2.4 Fourier Transform Infrared Spectrometer, FTIR Digilab FTS-40 22
3.2.5 Field Emission Scanning Electron Microscope, FE-SEM, Hitachi S-800 22
3.2.6 Transmission Electron Microscope, TEM, Hitachi H-7100 22
3.2.7 Optical Microscope, OLYMPUS DP 21 22
3.2.8 Mirage MD-200S electronic densimeter 24
3.2.9 Chromameter (CR-300), produced by MINOLTA 24
3.2.10 Pycnometer 10 ml at 20oC 24
3.2.11 Universal Testing Machine, Testometric M500-25AT 24
3.2.12 Impact Tester, BPI Basic Pendulum Impact Tester, Dynisco 24
3.2.13 Freeze dryer, FreeZone 2.5, LABCONCO 24
3.2.14 Vacuum pump (G-50DA), produced by ULVAC Company 24
3.2.15 Thermostated silicon oil bath 24
3.2.16 Aluminium plates 24
3.2.17 Aluminium mold 24
3.2.18 Dumbbell type of mold 24
3.2.19 Digital pH/MVmeter, TS-1, SUNTEX 24
3.2.20 SEM sample holder 24
3.2.21 Grinding machine 24
3.2.22 Mechanical stirrer, Eurostar digital, IKA-WERKE 24
3.3 Procedure of Experiment 25
3.3.1 Synthesis of Reactive Microgel 25
3.3.2 Fourier Transform Infrared Spectrometer (FTIR) Experiment 26
3.3.2.1 Unsaturated Polyester Calibration 26
3.3.2.2 The Number of Remaining Unsaturated C=C Bonds in the Reactive Microgel Measurement 27
3.3.3 Phase Separation Characteristic Experiment 28
3.3.4 Volume Shrinkage Measurement of St/UP/RM Ternary System 28
3.3.5 Internal Pigmentability Sample Preparation 29
3.3.6 Scanning Electron Microscope (SEM) Sample Preparation 30
3.3.7 Transmission Electron Microscope (TEM) Sample Preparation 30
3.3.7.1 Thin Section Sample Preparation 30
3.3.7.2 Liquid Sample Preparation 31
3.3.8 Optical Microscope Sample Preparation 32
3.3.9 Mechanical Properties Sample Preparation 33
3.4 Experimental Calculation 35
3.4.1 Emulsion composition for reactive microgel synthesis 35
3.4.2 Sample composition for St/UP/RM cured ternary system 36
3.4.3 The number of unsaturated C=C bonds in the reactive microgel calculation by FTIR experiment 37
3.4.4 Volume shrinkage calculation of St/UP cured binary system and St/UP/RM cured ternary system 38
3.4.5 Fracture toughness calculation of St/UP cured binary system and St/UP/RM cured ternary system 39

CHAPTER IV RESULT AND DISCUSSION
4.1 Reactive Microgel 41
4.1.1 Synthesis and Size of Reactive Microgel Particle 41
4.1.1.1 MND25 type of reactive microgel 42
4.1.1.2 MA-PG type of reactive microgel 45
4.1.1.3 MA-PA-PG type of reactive microgel 49
4.1.1.4 Vinyl ester resin (VE) type of reactive microgel 52
4.1.2 Characterization of Number of Unreacted C=C Bonds in Reactive Microgel 53
4.1.2.1 Calibration Curves for Neat Unsaturated Polyester 53
4.1.2.2 FTIR Spectrum for Reactive Microgel 69
4.2 Molecular Polarity of Unsaturated Polyester (UP) and Reactive Microgel (RM) 99
4.2.1 Unsaturated Polyester (UP) 99
4.2.2 Reactive Microgel (RM) 102
4.3 Phase Separation Characteristics of St/UP/10 wt% of RM Ternary System 112
4.4 Microstructure Morphology of Cured Sample 113
4.4.1 Optical Microscope Observations 113
4.4.1.1 St/UP and St/VER binary systems 113
4.4.1.2 St/UP (MA-PG)/10 wt% RM 117
4.4.1.3 St/UP (MA-PA-PG)/10 wt% RM 122
4.4.1.4 St/VER/10 wt% RM 127
4.4.2 Scanning Electron Microscope Observations 132
4.4.2.1 St/UP and St/VER cured binary systems 132
4.4.2.2 St/UP (MA-PG)/10 wt% of RM 136
4.4.2.3 St/UP (MA-PA-PG)/10 wt% RM 141
4.4.2.4 St/VER/10 wt% of RM 146
4.4.3 Transmission Electron Microscope Observations 151
4.4.3.1 St/UP (MA-PG)/10 wt% RM 151
4.4.3.2 St/UP (MA-PA-PG)/10 wt% RM 156
4.4.3.3 St/VER/10 wt% of RM 161
4.5 The Takayanagi Models 166
4.6 Volume Shrinkage 168
4.7 Internal Pigmentability 182
4.8 Mechanism of Volume Shrinkage Control 190

CHAPTER V CONCLUSIONS 192
REFERENCE 194
1.R.B. Burns,” Polymer Molding Compounds,” Marcel Dekker, New York, 1982.
2.Y.S. Yang and L.J. Lee, Polymer, 29, 1793 (1988).
3.Y.J. Huang and J.S. Leu, Polymer, 34, 295 (1993).
4.E.J. Bartkus and C.H. Kroekel, Appl. Polym. Symp., 15, 113 (1970).
5.S.S. Schwartz and S.H. Goodman,” Plastic Materials and Processes,” Van Nostrand Reinhold Company, 1982, pp. 329-331, and 710.
6.J.P. Dong, S.G. Chiu, M.W. Hsu, and Y.J. Huang, J. Appl. Polym. Sci., 100, 967 (2006).
7.K.E. Atkins in, “ Sheet Molding Compounds: Science and Technology,” H.G. Kia, ed., Hanser Publishers, New York, 1993, Chap. 4.
8.Y.J. Huang and C.M. Liang, Polymer, 37, 401 (1996).
9.L. Suspene, D. Fourquier, and Y.S. Yang, Polymer, 32, 1593 (1991).
10.C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee, Polym. Eng. Sci., 31, 1450 (1991).
11.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 55, 323 (1995).
12.Y.J. Huang and W.C. Jiang, Polymer, 39, 6631 (1998).
13.Y.J. Huang and J.C. Horng, Polymer, 39, 3683 (1998).
14.K.E. Atkins, G.C. Rex, C.G. Reid, R.L. Seats, and R.C. Candy, 47th Annu. Conf. Cincinnati, OH, Feb. 1992, 7-D.
15.Y. Hoshino, K. Kataoka, Y. Asanaka, and H. Takeuchi, 46th Annu. Conf. Cincinnati, OH, Feb. 1991, 21-A.
16.Y.J. Huang, T.S. Chen, J.G. Huang, and F.H. Lee, J. Appl. Polym. Sci., 89, 3336 (2003).
17.J.P. Dong, J.H. Lee, D.H. Lai and Y. J. Huang, J. Appl. Polym. Sci., 98, 264 (2005).
18.K. Horie, I. Mita, and H. Kambe, J. Polym. Sci. Part A-1: Polym. Chem., 7, 2561, (1969).
19.Y.J. Huang and T.J. Lu, and W. Hwu, Polym. Eng. Sci., 33, 1 (1993).
20.Y.J. Huang and C.J. Chen, J. Appl. Polym. Sci., 47, 1533 (1993)
21.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 55, 305 (1995).
22.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz, J. Appl. Polym. Sci., 18, 2763 (1974).
23.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz, J. Appl. Polym. Sci., 18, 3045 (1974).
24.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan, and Y.J. Huang, J. Appl. Polym. Sci., 91, 3388 (2004).
25.M. Takayanagi, K. Imada, and T. Kajimaya, J. Polym. Sci. Part C, 15, 263 (1966).
26.L.H. Sperling,” Introduction to Physical Polymer Science”, 2nd Ed., Wiley, New York, 1992, p. 464.
27.Y.J. Huang, S.C. Lee, and J.P. Dong, J. Appl. Polym. Sci., 78, 558 (2000).
28.Y.J. Huang, T.S. Chen, J.G. Huang, and F.H. Lee, J. Appl. Polym. Sci., 89, 3347 (2003).
29.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan, and Y.J. Huang, J. Appl. Polym. Sci., 91, 3369 (2004).
30.W. Funke, R. Kolitz, and W. Straehle, Makromol. Chem., 180, 2797 (1979).
31.W. Funke, British Polymer Journal, 21, 107 (1989).
32.L. Liang and W. Funke, Macromolecules, 29, 8650 (1996).
33.L. Michael Angliss et al., inv: Burchill, Peter, John, and Martyn, Patent Cooperation Treaty, WO97/43339 (1997).
34.S. Ziagee and G..R. Palmese, J. Polym. Sci Part B, 37, 725 (1999).
35.X. Cao and L.J. Lee, J. Appl. Polym. Sci., 90, 1486 (2003).
36.P. Li, X.P. Yang, Y.H. Yu, and D.S. Yu, J. Appl. Polym. Sci., 92, 1124 (2004).
37.S.S. Hsu, M.S. Thesis, National Taiwan University of Science and Technology, 2007.
38.C.C. Chu, M.S. Thesis, National Taiwan University of Science and Technology, 2007.
39.C.D Yuan, Y.S. Xu, Y.J. Wang, D.H. Liu, Y.J. Chai, and T.Y Cao, J. Appl. Polym. Sci, 77, 3049 (2000).
40.S.L. Rosen,” Fundamental Principles of Polymeric Materials,” 2nd ed., John Wiley & Sons, Inc., New York, 1993.
41.K.E. Atkins and G.C. Rex, 48th Annu. Conf., Composites Institute, The Society of the Plastics Industry (SPI), Eds.: Washington, DC, 1993, p 6-D.
42.D.W. Krevelen,” Properties of Polymers,” 3rd ed.; Elsevier, London, 1990, pp. 198, 323.
43.R.F. Fendor, Polym. Eng. Sci., 14, 147 (1974
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top