(3.210.184.142) 您好!臺灣時間:2021/05/09 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳班尼
研究生(外文):Benny Gosali
論文名稱:添加甲殼素寡糖對電流式葡萄糖生物感測器性能影響之研究
論文名稱(外文):Behavior of Chitosan Oligosacharides Addition on Amperometric Glucose Biosensor Performance
指導教授:李嘉平李嘉平引用關係郭俞麟郭俞麟引用關係王文王文引用關係
指導教授(外文):Chiapyng LeeYu-lin KuoWen Wang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:115
中文關鍵詞:葡萄糖生物感測器甲殼素寡糖網印技術碳電極
外文關鍵詞:Glucose BiosensorChitosan OligosaccharidesScreen Printed Carbon Electrode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗成功利用網印技術製備電流式葡萄糖生物感測器。利用網印技術可成功將碳電極以及絕緣層印製在PVC基板上。含蓋赤血鹽和甲殼素寡糖的試劑層也同樣利用網印技術印製在感測試片上的固定區域,之後再將葡萄糖氧化酶溶液滴覆在試劑層上,則成功製備出酵素修飾電極。
在黏結層部分,則是利用鋼板印刷技術,印製在感測試片特定區域,並結合親水層即可成功在感測試片上製備出樣品流道,這樣就完成葡萄糖感測器的製備動作。
網印碳電極葡萄糖生物感測器的表面型態分析,則是運用光學顯微鏡和掃描式電子顯微鏡來分析,電化學性質分析則是利用循環伏安法和時間電流分析法來分析。
本實驗也有進行干擾以及穩定性的測試,此葡萄糖生物感測器具有相當快的訊號回應時間(8秒以下),並且樣品需求量只需要1.5 μl,靈敏度可達0.027 μA/mg/dL,感測線性範圍為50~600 mg/dL,平均變異係數為5.7%,並且不受氧氣和維他命C的感擾,穩定性方面,在過了55天之後,感測器性能仍然有93%的起始活性,並且發現酵素修飾層中添加了甲殼素寡糖,能夠成功提高葡萄糖生物感測器的靈敏度以及穩定性。
ABSTRACT


An amperometric glucose biosensor based on screen printed carbon electrode (SPCE) was successfully developed in this research. Carbon electrode and insulation layer was screen-printed onto PVC substrate. Reagent layer which contained ferricyanide and chitosan oligosaccharides was also screen-printed on the defined area. The glucose oxidase solution was applied to the reagent layer by drop-coating technique. Adhesive layer was stencil-printed onto the SPCE to form the spacer and define the sample chamber. Finally application of the hydrophilic layer to the glucose biosensor completed the whole fabrication process.
The physical characteristics of the SPCE and glucose biosensor were studied by optical microscope (OM), and scanning electron microscope (SEM) technique, while their electrochemical characteristics were studied by cyclic voltammetry and amperometry technique. Interference and stability tests were also done in this research.
The fabricated glucose biosensor exhibited a relatively fast response (below 10s), and only 1.5μL sample needed. Its sensitivity was 0.027μA/mg/dL, and had linear detection range from 50-600mg/dL. The average coefficient of variation was 5.7%. No interference effects from oxygen and ascorbic acid (1.5mg/dL) were observed during the interference tests. After 55 days, glucose biosensor retained 93% of its initial activity. Chitosan oligosaccharides addition into the glucose biosensor’s reagent layer successfully increased its sensitivity and stability.
TABLE OF CONTENTS

Abstract................................................................................................................................i
Table of contents.................................................................................................................ii
List of figures.....................................................................................................................iii
List of tables.......................................................................................................................iv
Acknowledgements.............................................................................................................v

Chapter I. Introduction.........................................................................................................1
I.1. Chemical sensors and biosensors......................................................................1
I.1.1. Chemical sensors and biosensors definition.......................................1
I.2. Importance of biosensors...................................................................................2
I.2.1. Applications of biosensors..................................................................2
I.2.1.1. Health care application of biosensors..................................3
I.2.1.2. Environmental monitoring application of biosensors..........3
I.2.1.3. Food and drink analysis application of biosensors..............4
I.2.1.4. Defense and military applications of biosensors.................5
I.3. Diabetes status...................................................................................................5
I.4. Objective and scope of this research.................................................................8
I.5. Significance of this research.............................................................................9

Chapter II. Literature review..............................................................................................11
II.1. Transduction method of biosensors................................................................12
II.1.1. Electrochemical based biosensors...................................................12
II.1.1.1. Conductimetric biosensors...............................................13
II.1.1.2. Amperometric biosensors.................................................14
II.1.1.3. Potentiometric biosensors................................................17
II.1.1.4. FET-based biosensors......................................................18
II.1.2. Optical based biosensors.................................................................20
II.1.3. Quartz crystal microbalance (QCM) based biosensors...................22
II.1.4. Thermal or calorimetric based biosensors......................................23
II.2. Immobilization methods................................................................................24
II.2.1. Physical adsorption.........................................................................24
II.2.2. Entrapment......................................................................................25
II.2.3. Cross-linking...................................................................................25
II.2.4. Covalent bonding............................................................................26
II.3. Biosensor fabrication technology...................................................................28
II.3.1. Thick film technology.....................................................................28
II.3.2. Thin film technology.......................................................................31
II.4. Performance factors of biosensors.................................................................35
II.5. Chitin and chitosan........................................................................................36
II.5.1. Chitin and chitosan properties.........................................................37
II.5.2. Chitosan based materials.................................................................39
II.5.3. Chemical modifications of chitosan................................................40
II.5.4. Chitosan oligomers..........................................................................41
II.5.5. Chitosan applications.......................................................................42



II.6. Glucose biosensor technology........................................................................45
II.6.1. Evolution of glucose biosensor.......................................................45
II.6.1.1. First generation glucose biosensor...................................47
II.6.1.2. Second generation glucose biosensor..............................48
II.6.1.3. Third generation glucose biosensor.................................51

Chapter III. Experimental..................................................................................................53
III.1. Instruments....................................................................................................55
III.1.1. Semi-automatic screen printer, screens and stencil.......................55
III.1.2. Sonicator........................................................................................57
III.1.3. Potentiostat....................................................................................58
III.1.4. Other instruments..........................................................................58
III.2. Materials and reagents..................................................................................59
III.2.1. Substrate and inks..........................................................................59
III.2.2. Buffer and solvents........................................................................59
III.2.3. Reagent ink and enzyme................................................................60
III.2.4. Other materials...............................................................................61
III.3. Preparation of buffer solutions......................................................................61
III.4. Preparation of glucose solutions...................................................................61
III.5. Preparation of reagent ink.............................................................................61
III.6. Preparation of enzyme solution....................................................................62
III.7. Substrate handling and preconditioning........................................................62
III.8. Carbon electrodes screen printing.................................................................64
III.9. Insulation layer screen printing.....................................................................65
III.10. Reagent layer screen printing......................................................................66
III.11. Adhesive layer stencil printing...................................................................67
III.12. Enzyme solution drop-coating....................................................................68
III.13. Sensor strip finishing..................................................................................68
III.14. Glucose biosensor characterization............................................................69
III.14.1. Physical characterization.............................................................69
III.14.2. Electrochemical characterization.................................................70
III.14.2.1. Cyclic voltammetry.......................................................70
III.14.2.2. Amperometry................................................................70

Chapter IV. Results and discussion...................................................................................71
IV.1. Glucose biosensor.........................................................................................71
IV.1.1. Mediated glucose biosensor mechanism.......................................71
IV.1.2. Important features..........................................................................76
IV.2. Glucose biosensor design.............................................................................78
IV.3. Glucose biosensor fabrication process.........................................................80
IV.3.1. Substrate selection.........................................................................80
IV.3.2. Carbon electrodes..........................................................................81
IV.3.3. Insulation layer..............................................................................82
IV.3.4. Reagent layer.................................................................................82
IV.3.5. Adhesive layer...............................................................................86
IV.3.6. Hydrophilic layer...........................................................................86



IV.4. Characterization of screen printed carbon electrode (SPCE).......................87
IV.4.1. Physical characterization of SPCE................................................87
IV.4.2. Electrochemical characterization of SPCE....................................88
IV.4.2.1. Cyclic voltammetry analysis...........................................89
IV.4.2.2. Effect of scan rate...........................................................90
IV.4.2.3. Electron transfer rate.......................................................92
IV.5. Characterization of glucose biosensor..........................................................93
IV.5.1. Physical characterization of glucose biosensor.............................93
IV.5.2. Electrochemical characterization of glucose biosensor.................94
IV.5.2.1. Cyclic voltammetry analysis...........................................94
IV.5.2.2. Amperometry analysis....................................................97
IV.5.2.2.1. Applied potential effect...................................97
IV.5.2.2.2. Construction of calibration curves...................99
IV.5.3. Interference study on glucose biosensor..........................101
IV.5.4. Stability of glucose biosensor..........................................103

Chapter V. Conclusions and future work.........................................................................105

References........................................................................................................................106

Author’s information.......................................................................................................115
REFERENCES

[1] Tran-Minh C., Biosensors, Chapman and Hall, 1993.
[2]Diamond, D., Principles of chemical and biological sensors, Chemical Analysis Vol. 150, John Wiley and Sons, Inc., New York, 1998.
[3]Turner, A. P. F., Karube, I., Wilson, G. S., Biosensors: Fundamentals and Applications, Oxford university press, Oxford, 1987.
[4]Tothill, I. E., Biosensors developments and potential applications in the agricultural diagnosis sector, Computers and electronics in agriculture, Volume 30, 2001, p. 205–218.
[5]Dzyadevych, S.V., V.N. Arkhypova., A.P. Soldatkin., A.V. El’skaya., C. Martelet., N. Jaffrezic-Renaul., Amperometric enzyme biosensors: Past, present and future., ITBM-RBM, 2008.
[6]Rodriguez-Mozaz, S., Maria-Pilar, M., Maria J.L., Barceló, D., Biosensors for environmental applications: Future development trends, Pure applied chemistry, Volume. 76, 2004, p. 723–752.
[7]Shen, J., Development and characterization of thick-film printed electrochemical biosensors, Doctoral dissertation, Case Western Reserve University, Cleveland, 2007.
[8]Miscoria, A. S., Barrera, D. G., Rivas, G. A., Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rhodinized glassy carbon and screen printed electrodes, Sensors and actuators B : Chemical, Volume 115, 2006, p. 205-211.
[9]Sulak, M. T., Gökdoğan, Ö., Gülce, A., Gülce, H., Amperometric glucose biosensors based on gold-deposited polyvinylferrocene film on Pt electrode, Biosensors and bioelectronics, Volume 21, 2006, p. 1719-1726.
[10]Lu, B. W., Chen, W. C., A disposable glucose biosensor based on drop-coating of screen printed carbon electrodes with magnetic nanoparticles, Journal of magnetism and magnetic materials, Volume 304, 2006, p. 400-402.
[11]Yabuki, S., Mizutan, F., Preparation of amperometric glucose sensor based on electrochemically polymerized films of indole derivatives, Sensors and actuators B: Chemical, Volume 108, 2005, p. 651-653.
[12]Zhao, Z. W., Chen. X. J., Tay, B. K., Chen, J. Z., Han, Z. J., Khor, K. A., A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose, Biosensors and bioelectronics, Volume 23, 2007, p. 135-139.
[13]Yang, H., Zhu, Y., Glucose biosensor based on nano-SiO2 and “umprotected” Pt nanoclusters, Biosensors and bioelectronics, Volume 22, 2007, p. 2989-2993.
[14]Shan, D., Zhu, M., Xue, H., Cosnier, S., Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles, Biosensors and bioelectronics, Volume 22, 2007, p. 1612-1617.
[15]Zou, Y., Xiang, C., Sun, L., Xu, F., Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique, Electrochimica acta, Volume 53, 2008, p. 4089-4095.
[16]Jiang, L., Liu, H., Liu, J., Yang, Q., Cai, X., A sensitive biosensor based in Os-complex mediator and glucose oxidase for low concentration glucose determination, Journal of electroanalytical chemistry, 2008.

[17]Cano, M., Avila, J. L., Mayen, M., Mena, M. L., Pingarron, J., Rodriguez-Amaro, R., A new, third generation, PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. Journal of electroanalytical chemistry, Volume 615, 2008, p. 69-74.
[18]Kumar, J., D’Souza, S. F., Preparation of PVA membrane for immobilization of GOD for glucose biosensor, Talanta, Volume 75, 2008, p. 183-188.
[19]Khan, R., Kaushik, A., Solanki, P. R., Ansari, A. A., Pandey, M. K., Malhotra, B. D., Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, Analytica chimica acta, 2008.
[20]Parra, A., Casero, E., Pariente, F., Vasquez, L., Lorenzo, E., Cholesterol oxidase modified gold electrodes as bioanalytical devices, Sensors and actuators B : Chemical, Volume 124, 2007, p. 30-37.
[21]Singh, S., Singhal, R., Malhotra, B. D., Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor, Analytica chimica acta, Volume 582, 2007, p. 335-343.
[22]Bongiovanni, C., Ferri, T., Poscia, A., Varalli, M., Santucci, R., Desideri, A., An electrochemical multienzymatic biosensor for determination of cholesterol. Bioelectrochemistry, Volume 54, 2001, p. 17-22.
[23] Shumyantseva, V., Deluca, G., Bulko, T., Carrara, S., Nicolini, C., Usanov, S. A., Archakov, A., Cholesterol amperometric biosensor based on cytochrome P450scc, Biosensors and bioelectronics, Volume 19, 2004, p. 971-976.
[24]Vidal, J. C., Espuelas, J., Castillo, J. R., Amperometric cholesterol biosensor based on in-situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor, Analytical bioshemistry, Volume 333, 2004, p. 88-98.
[25]Romero, M. R., Garray, F., Baruzzi, A. M., Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes, Sensors and actuators B: Chemical, 2007.
[26]Tsai, Y. C., Chen, S. Y., Liaw, H. W., Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and actuators B: Chemical Volume 125, 2007, p. 474-481.
[27]Pereira, C. A., Aguiar, M. R., Kisner, A., Macedo, D. V., Kubota, L. T., Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon nanotube, Sensors and actuators B: Chemical, Volume 124, 2007, p. 269-276.
[28]Parra, A., Casero, E., Pariente, V. F., Lorenzo, E., Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces, Analytica chimica acta, Volume 555, 2006, p. 308-315.
[29]Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C., Urea biosensor based on ZN3Al-Urease layered double hydroxides nanohybrid coated on insulated silicon structures, Materials science and engineering: C, Volume 26, 2006, p. 328-333.
[30]Bisht, R. V., Takashima, W., Kaneto, K., A novel thin film urea biosensor based on copolymer poly(N-3-aminopropylpyrolle-co-pyrolle) film, Surface and coatings technology, Volume 198, 2005, p. 231-236.



[31]Rajesh, Bisht, V., Takashima, W., Kaneto, K., An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropylpyrolle-co-pyrolle) film, Biomaterials, Volume 26, 2005, p. 3683-3690.
[32]Vostiar, I., Tkac, J., Sturdik, E., Gemeiner, P., Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe, Bioelectrochemistry, Volume 56, 2002, p. 113-115.
[33]Berberich, J. A., Yang, Lee, W. Y., Madura, J., Bahar, I., Russell, A. J., A stable three-enzyme creatinine biosensor. 1. Impact of structure, function and environment on PEGylated and immobilized sarcosine oxidase, Acta biomaterialia, Volume 1, 2005. p. 173-181.
[34]Stefan, R. I., Bokretsion, R. G., Staden, J. F., Aboul-Enein, H. Y., Simultaneous determination of creatine and creatinine using amperometric biosensors, Talanta, Volume 60, 2003, p. 1223-1228.
[35]Tombach, B., Schneider, J., Matzkies, F., Schaefer, R. M., Chemnitius, G. C., Amperometric creatinine biosensor for hemodialysis patients, Clinica chimica acta, Volume 312, 2001, p. 129-134.
[36]Kubo, I., Karube, I., Suzuki, S., Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria, Analytica chimica acta, Volume 151, 1983, p. 371-376.
[37]Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., Choi, M. M. F., Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane, Biosensors and bioelectronics, Volume 22, p. 1791-1797.
[38]Luo, Y. C., Do, J. S., Liu, C. C., An amperometric uric acid biosensor based on modified Ir-C electrode, Biosensors and bioelectronics, Volume 22, 2006, p.482-488.
[39]Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., Jin, L., Yamamoto, K., ZnS quantum dots derived a reagentless uric acid biosensor, Talanta, Volume 68, 2006, p. 1353-1358.
[40]Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., Jin, L., Yamamoto, K., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Analytica chimica acta, Volume 519, 2004, p. 155-160.
[41]Liu, N., Li, G. J., Liu, S. F., Zhang, S. S., Electrochemical DNA biosensor for the detection of interaction between Di[azino-di(5,6-azafluorene)-K2-NN’]dichlormanganous and DNA, Sensors and actuators B : Chemical, 2008.
[42]Minunni, M., Tombelli, S., Scielzi, R., Mannelli, I., Mascini, M., Gaudiano, C., Detection of β-thalassemia by a DNA piezoelectric biosensor coupled with polymerase chain reaction, Analytica chimica acta, Volume 481, 2003, p. 55-64.
[43]Meric, B., Kerman, K., Ozkan, D., Kara, P., Erensoy, S., Akarca, U. S., Mascini, M., Ozsos, M., Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus fom PCR amplified real samples by using methylene blue, Talanta, Volume 56, 2002, p. 837-846.
[44]Jiang, X., Li, D., Xu, X., Ying, Y., Li, Y., Yu, Z., Wang, J., Immunosensors for detection of pesticide residues, Biosensors and bioelectronics, Volume 23, 2008, p. 1577-1587.




[45]Li, S., Zhang, R., Li, P., Yi W., Zhang, Z., Chen, S., Su, S., Zhao, L., Hu, C., Development of a novel method to measure macrophage migration inhibitory factor (MIF) in sera of patients with rheumatoid arthritis by combine electrochemical immunosensor, International Immunopharmacology, Volume 8, 2008, p. 859-865.
[46]Kurtinaitiene, B., Ambrozaite, D., Laurinavicius, V., Ramanaviciene, A., Ramanavicius, A., Amperometric immunosensor for diagnosis of BLV infection, Biosensors and bioelectronics, Volume 23, 2008, p. 1547-1554.
[47]Dhall, P., Kumar, A., Joshi, A., Saxsena, T. K., Manoharan, A., Makhijani, S. D., Kumar, R., Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor, Sensors and actuators B: Chemical, 2008.
[48]Lin, L., Xiao, L. L., Li, S. H., Zhao, L., Cui, J. S., Wang, X. H., Chen, X., Novel BOD optical fiber biosensor based on co-immbilized microorganisms in ormosils matrix, Biosensors and bioelectronics, Volume 21, 2006, p. 1703-1709.
[49]Kumlanghan, A., Kanatharana, P., Asawatreratanakul, P., Mattiasson, B., Thavarungkul, P., Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry, Enzyme and microbial technology, Volume 42, 2008, p. 483-491.
[50]Hildebrandt, A., Ribas, J., Bragos, R., Marty, J. L., Tresanchez, M., Lacorte, S., Development, of a portable biosensor for screening neurotoxic agents in water, Talanta, 2008.
[51]Albuquerque, Y. D. T., Ferreira, L. F., Amperometric biosensing of carbamate and organophospate pesticides utilizing screen-printed tyrosinase-modified electrodes, Analytica chimica acta, Volume 596, 2007, p. 210-221.
[52]Soh, N., Tokuda, Y., Watanabe, T., Mishima, K., Imato, T., Masadome, T., Asano, Y., Okutani, S., Niwa, O., Brown, S., A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide, Talanta, Volume 60, 2003, p. 733-745.
[53]Shan, D., Xue, H., He, Y., Cosnier, S., Calcium carbonate nanoparticles: A host matrix for the construction of highly sensitive amperometric phenol biosensor, Biosensors and bioelectronics, Volume 23, 2007, p. 648-654.
[54]Fan, Q., Shan, D., Xue, H., He, Y., Cosnier, S., Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix, Biosensors and bioelectronics, Volume 22, 2007, p. 816-821.
[55]Dawson, J. C. C., Campbell, C. D., Towers, W., Cameron, C. M., Paton, G. I., Linking biosensor responses to Cd, Cu, and Zn partitioning in soils, Environmental pollution, Volume 142, 2006, p. 493-500.
[56]Haron, S., Ray, A. K., Optical biodetection of cadmium and lead ions in water, Medical engineering & physics, Volume 28, 2006, p. 978-981.
[57]Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D., and Csoregi, E., Biosensors for life quality: Design, development, and applications, Sensors and actuators B, Volume 102, 2004, p. 179-194.
[58]Terry, L.A., White, S.F., and Tigwell, L.J., The application of biosensors to fresh produce and the wider food industry, Journal of agricultural and food chemistry Volume 53, 2005, p. 1309-1316.


[59] Inaba, Y., Tokishita, S., Hamada-Sato, N., Kobayashi, T., Imada, C., Yamagata, H., and Watanabe, E., Development of agmatine sensor using the combination of putrescine oxidase and agmatinase for squid freshness, Biosensors and bioelectronics, Volume 20, 2004, p. 833-840.
[60]Yano, Y., Yokoyama, K., Tamiya, E., and Karube, I., Direct evaluation of meat spoilage and the progress of aging using biosensors, Analytica chimica acta, Volume 320, 1996, p. 269-276.
[61]Hayashi, K., Okugawa, T., Kozuka, Y., Sasaki, S., Ikebukuro, K., and Karube, I., Novel measurement of hypoxanthine in fish using direct measurement probe and chemiluminescence flow injection analysis, Journal of food science, Volume 61, 1996, p. 736-740.
[62]Ramirez, G. V., Fournier, D., Silva, M. T. R., Marty, J. L., Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin, Talanta, Volume 74, 2008, p. 741-746.
[63]Verma, N., Singh, M., A disposable microbial based biosensor for quality control in milk, Biosensors and bioelectronics, Volume 18, 2003, p. 1219-1224.
[64]Ruiz, J. G., Lomillo, M. A. A., Munoz, F. J., Screen-printed biosensors for glucose determination in grape juice, Biosensors and bioelectronics, Volume 22, 2007, p. 1517-1521.
[65]Paddle, B.M., Biosensors for chemical and biological agents of defence interest, Biosensors and bioelectronics, Volume 11, 1996, p. 1079-1113.
[66]Lei, Y., Mulchandani, P., Chen, W., Wang, J., and Mulchandani, A., Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophoporous nerve agents with p-nitrophenyl substituent, Biotechnology and bioengineering, Volume 85, 2004, p. 706-713.
[67]Naimushin, A.N., Soelberg, S.D., Nguyen, D.K., Dunlap, L., Bartholomew, D., Elkind, J., Melendez, J., and Furlong, C.E., Detection of Staphylococcus aureus enterotoxins B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor, Biosensors and bioelectronics, Volume 17, 2002, p. 573-584.
[68]Poernomo, T., Fabrication of a disposable glucose biosensor on screen-printed carbon electrodes, Master Thesis, National Taiwan University of Science and Technology, Taipei, 2008.
[69]Dean J. T., Narayan V. K. M., Ping Zhang, Alka M. K., Desmond E. W., Michael M. E., Giussepina I., Ambady R., Disease control priorities in developing countries, Oxford, 2006, p. 591-603.
[70]Newman, J.D., and Turner, A.P.F., Home blood glucose biosensors: A commercial perspective, Biosensors and bioelectronics, Volume 20, 2005, p. 2435-3453.
[71]World health organization (WHO), Diabetes: fact sheet, September 2006, http://www.who.int/mediacentre/factsheets/fs312/en/index.html, accessed on May 2008.
[72]Centers for disease control and prevention (CDC), National diabetes fact sheet, 2005, http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2005.pdf, accessed on May 2008.
[73]American diabetes association (ADA), Self-monitoring of blood glucose, Diabetes care, Volume 17, 1994, p. 81-86.
[74]Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes care, Volume 27, 2004, p. 1047-1053.
[75]King, H., Aubert, R.E., and Herman, W.H., Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes care, Volume 21, 1998, p. 1414-1431.
[76]Wei, J.N., Chuang, L,M., Lin, R.S., Chao, C.L., and Sung, F.C., Prevalence and hospitalization rates of diabetes mellitus in Taiwan, 1996-2000, Taiwan journal of public health, Volume 21, 2002, p.173-180.
[77]Taiwanese department of health, Taiwan yearbook 2006: Public health, Government information office, 2006, http://www.gio.gov.tw/taiwan-website/5-gp/yearbook/16PublicHealth.htm, accessed on May 2008.
[78]Bard, A.J., Faulkner, L.R., Electrochemical methods: Fundamentals and applications, New York: John Wiley & Sons, 2nd Edition, 2000.
[79]Mohanty, S. P., Biosensors: A survey report, University of South Florida, USA, 2001.
[80] R. S. Sethi and C. R. Lowe, Electrochemical microbiosensors, IEE Colloqium on
microsensors, 1990, p. 911-915.
[81]Wang, X., Dzyadevych, S. V., Chovelon, J. M., Renault, N. F., Chen, L., Xia, S., Zhao, J., Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes, Talanta, Volume 69, 2006, p. 450-455.
[82]Soto, A. M. G., Jaffari, S. A., Bone, S., Characterization and optimization of AC conductimetric biosensors, Biosensors and bioelectronics, Volume 16, 2001, p. 23-29.
[83]Chaubey, A., and Malhotra, B.D., Mediated biosensors, Biosensors and bioelectronics, Volume 17, 2002, p. 441-456.
[84]Kissinger, P. T., Introduction to amperometric biosensors configurations, Current separations Volume 16, 1997.
[85]http://www.lsbu.ac.uk/biology/enztech/potentiometric.html, accessed at may 2008.
[86]http://www.gatewaycoalition.org/files/Hidden/sensr/ch4/4_3_3f.htm, accessed at May 2008.
[87]Eggins, B.R., Chemical sensors and biosensors, John Wiley and Sons, Ltd., West Sussex, 2002.
[88]Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, Biomedical engineering, Volume 70, 1970, p. 70-71.
[89]Wroblewski, W., Field effect transistors (FETs) as transducers in electrochemical sensors, Warsaw University of Technology, 1996.
[90]Chen, J. C., Chou, J. C., Sun, T. P., Hsiung, S. K., Portable urea biosensor based on the extended- gate field effect transistor, Sensors and actuators B : Chemical, Volume 91, 2003, p. 180-186.
[91]Kim. D. S., Park, J. E., Shin, J. K., Kim, P. K., Lim, G., Shoji, S., An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes, Sensors and actuators B : Chemical, Volume 117, 2006, p. 488-494.
[92]Luppa, P. B., Sokoll, L. J., Chan, D. W., Immunosensors: Principles and applications to clinical chemistry, Clinica chimica acta, Volume 314, 2001, p. 1-26.
[93]Rich, R. L., Myszka, D. G., Survey of the year 2006 commercial optical biosensor literature, Journal of molecular recognition, Volume 20, 2007, p. 300-366.
[94]Marx, K. A., Quartz crystal microbalance (QCM): A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules, Volume 4, 2003.
[95] Wingard, B. L., Immobilized enzyme principles, Academic press, USA, 1976.
[96] Brazel, C.S., Biomedical sensing by the use of intelligent polymers, Encyclopedia
of Smart Materials (M. Schwartz, ed.), John Wiley and Sons, New York, 2002,
p. 95-111 .
[97]Laschi, S., and Mascini, M., Planar electrochemical sensors for biomedical
applications, Medical Engineering and Physics 28, 2006, p. 934-943.
[98]Cass, A. E. G., Biosensors, 2nd edition, Oxford University Press, 2004, p. 41-55.
[99]Sze, S. M., Semiconductor Devices Physics and Technology, 2nd edition, John
Wiley and Sons Inc, 2002, p. 404-416.
[100]Uragami, T., Material science of chitin and chitosan, Kodansha, 2006, p. 1-19.
[101]Mourya, V. K., Inamdar, N. N., Chitosan modifications and applications: Opportunities galore, Reactive and functional polymers, Volume 68, 2008.
[102]Rinaudo, M., Chitin and chitosan: Properties and applications, Progress in polymer science, Volume 31, 2006, p. 603-632.
[103]Clark, L. C., Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York academy of sciences, Volume 102, 1962, p. 29-45.
[104]Heineman, W. R., Obituary “Leland. C. Clark”, Biosensors and bioelectronics, Volume 21, 2006, p. 1403-1404.
[105]Clark, L. C., Membrane polarographic electrode system and method with electrochemical compensation, US patent 3,539,455, 1970.
[106]Updike, S. J., Hicks, G. P., The enzyme electrode, Nature Volume 214, 1967, p. 986-988.
[107]Guibault, G. G., Lubrano, G. J., An enzyme electrode for the amperometric determination of glucose, Analytica chimica acta, Volume 64, 1973, p. 439-455.
[108]Wang, J., Glucose biosensors: 40 years of advanced and challenges, Electroanalysis, Volume 13, 2001, p. 983-988.
[109]Gorton, L., Lindgren, A., Larsson, T., Munteanu, F.D., Ruzgas, T., and Gazaryan, I., Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analytica chimica acta, Volume 400, 1999, p. 91-108.
[110]Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D., and Csoregi, E., Biosensors for life quality: Design, development, and applications, Sensors and actuators B, Volume 102, 2004, p. 179-194.
[111]Gorton, L., Lindgren, A., Larsson, T., Munteanu, F.D., Ruzgas, T., and Gazaryan, I., Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analytica chimica acta, Volume 400, 1999, p. 91-108.
[112]Heller, A., Electrical connection of enzyme redox centers to electrodes, The Journal of physical chemistry, Volume 96, 1992, p. 3579-3587.
[113]Degani, Y., and Heller, A., Direct electrical communication between chemically modified enzymes and metal: 1. Electron transfer from Glucose Oxidase to metal electrodes via electron relays, bound covalently to the enzyme, The journal of physical chemistry, Volume 91, p. 1285-1289.
[114]Willner, I., Heleg-Shabtai, V., Blonder, R., Katz, E., Tao, G., Buckmann, A.F., and Heller, A., Electrical wiring of Glucose Oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, Journal of the american chemical society, Volume 118, 1996, p. 10321-10322.
[115]Cha, G. S., et al, A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent, Analytical chemistry, Volume 72, 2000.
[116]Nam, Hakhyun, et al., Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip, Talanta, Volume 54, 2001, p. 1105-1111.
[117]Wang, J, L. Fang, D. Lopez and H. Tobias, Highly selective and sensitive amperometric biosensing of glucose at ruthenium-dispersed carbon-paste enzyme electrodes, Analytical letter, Volume 26, 1993, p. 1819–1830.
[118]Rivas G.A. and B. Maestroni, Iridium-dispersed carbon paste amino acid oxidase electrodes, Analytical letter, Volume 30, 1997, p. 489–501.
[119]Zhang, Z. E., Liu, H. Y., Deng, J. Q., A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode, Analytical letter, Volume 68, 1996, p. 1632–1638.
[120]Shen, J., Dudik, L., Liu, C. C., An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors and actuators B: Chemical, Volume 125, 2007, p.106-113.
[121] Miscoria, S.A., Desbrieres, J., Barrera, G.D., Labbe, P., and Rivas, G.A., Glucose biosensor based on the layer-by-layer self-assembling of glucose oxidase and chitosan derivatives on a thiolated gold surface, Analytica chimica acta, Volume 578, 2006, p. 137-144.
[122]Mashazi, P.N., Ozoemena, K.I., and Nyokong, T., Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor, Electrochimica acta, Volume 52, 2006, p. 177-186.
[123]Lin, Y., Lu, F., Tu, Y., and Ren, Z., Glucose biosensors based on carbon nanotubes nanoelectrode ensembles, Nano Letters, Volume 4, 2004, p. 191-195.
[124]Hill, B., Accu-Chek® Advantage: Electrochemistry for Diabetes Management, Current separations, Volume 21, 2005, p. 45-48.
[125]Davies, O.W.H., A method of reducing interferences in an electrochemical sensor using two different applied potentials, International Patent WO 045413, 2005.
[126]Bolado, P. F., Santos, D. H., Ardisana, P. J. L., Pernia, A. M., Garcia, A. C., Electrochemical characterization of screen-printed and conventional carbon paste electrodes, Electrochimica acta, Volume 53, 2008, p.3635-3642.
[127]http://www.ebi.ac.uk/interpro/potm/2006_5/Page1.htm, accessed at may 2008.
[128] Gibson, Q.H., Swoboda, B.E.P., Massey, V., Kinetics and mechanism of action of glucose oxidase, The journal of biological chemistry, Volume 238, 1964 p. 3927-33934.
[129]Davies, O.W.H., Rapid response glucose sensor, European Patent Application EP 1394535 A1, 2004.
[130]http://www.cabot-corp.com/cws/product.nsf/PDSKEY/~~~TS610/$file/CAB-O-SIL_TS-610.pdf, accessed at may 2008.
[131]Lee, S.H., Fang, H.Y., and Chen, W.C., Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture, Sensor and Actuators B, Volume 117, 2006, p. 236-243.
[132]Bright, H., Appleby, M., The journal of biological chemistry, Volume 244, 1969 p. 3625–3634.
[133]Morgera. S, et.al., Regional Citrate Anticoagulation in Continuous Hemodialysis - Acid-Base and Electrolyte Balance at an Increased Dose of Dialysis, Nephron Clinical Practice, Volume 101, 2005.
[134]McAleer, J.F., Alvarez-Icaza, M., Hall, G., Plotkin, E.V., Scott, D., and Davies, O.W.H., Disposable test strips with integrated reagent/blood separation layer, US Patent 6,241,862, 2001.
[135]Pchelintsev, N. A., Millnerr, P.A, A novel procedure for rapid surface functionalisation and mediator loading of screen-printed carbon electrodes, Analytica chimica acta, Volume 612, 2008, p. 190-197.
[136]Wang, J., Tian, B., Nascimento, V.B., and Angnes, L., Performance of screen-printed carbon electrodes fabricated from different carbon inks, Electrochimica acta, Volume 43, 1998, p. 3459-3465.
[137]Wei, H., Sun, J.J., Xie, Y., Lin, C.G., Wang, Y.M, Yin, W.H., and Chen, G.N., Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure, Analytica chimica acta, Volume 588, 2007, p. 297-303.
[138]Ghamouss, F., Tessier, P-Y., Djouadi, M.A., Besland, M-P., and Boujtita, M., Examination of the electrochemical reactivity of screen printed carbon electrode treated by radio-frequency argon plasma, Electrochemistry communications, Volume 9, 2007, p.1798-1804.
[139]Gao, Z., Xie, F., Sharrif, M., Arshad, M., and Ying, J. Y., A disposable glucose biosensor based on diffusional mediator dispersed in nanoparticulate membrane on screen-printed carbon electrode, Sensors and Actuators B, Volume 111-112, 2005, p. 339-346.
[140] Yang, M. H., Yang, Y. H., Liu B., Shen G., Yu, R., Amperometric glucose biosensor based on chitosan with improved selectivity and stability, Sensors and Actuators B, Volume 101, 2004, p.169-276.
[141] Miao, Y., Tan, S. N., Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix cross-linked with glutaraldehyde. The analysts, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔