(3.238.96.184) 您好!臺灣時間:2021/05/10 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯喬鐙
研究生(外文):Chiao-Deng Ko
論文名稱:纖維素生質酒精程序之操作策略
論文名稱(外文):The Operation Strategy of Cellulosic Bio-Ethanol Process
指導教授:錢義隆
指導教授(外文):I-Lung Chien
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:209
中文關鍵詞:生質酒精發酵同時糖化發酵水解纖維素
外文關鍵詞:bio-ethanolfermentationSSFhydrolysiscellulose
相關次數:
  • 被引用被引用:2
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用文獻提出以無定形相纖維素和結晶相纖維素描述的酵素水解模式和使用自動控制化架構(The cybernetic modeling framework)的酵母菌發酵模式在不同的模式參數及操作條件使用下討論對程序造成的影響。之後再利用酵素水解和酵母菌發酵模式合併建立同時糖化發酵模式。
利用模擬退火 ( Simulated Annealing )方法當作程序的最佳化操作條件搜尋工具。在酵素水解程序中,以葡萄糖生產速率為目標函數之饋料批次程序與使用批次程序比較下會有更快的葡萄糖生產速率。但在考慮黏度的影響時,饋料批次程序可有效的降低黏度對程序的影響。在酵母菌發酵程序中,在有氧的狀況下酒精生產速率皆優於無氧狀況下的酵母菌發酵程序。在饋料與批次發酵程序比較,饋料批次程序亦優於批次程序的酒精生產速率。在同時糖化發酵程序最佳化操作條件搜尋結果中,針對了不同的限制條件下做了酒精生產速率最佳化的討論,相似地,在有氧的狀況下程序亦是有較佳的酒精生產速率。
In this research, the influence of using different model parameters and operation conditions in enzymatic hydrolysis mathemetic model which can describe two kinds of cellulose substrate ( crystalline phase and amorphous phase ) and the fermentation model based on the cybernetic modeling framework are studied. Then, we combined the two models into a simultaneous saccharification and fermentation model.
The optimization tool used in the research is Simulated Annealing method. In the enzymatic hydrolysis process, when the objective function is glucose productivity, the batch culture has higher productivity than the fed-batch culture. But in batch culture, the process viscosity is much higher than fed-batch culture. In the fermentation process, the ethanol productivity during the aerobic culture is higher than anaerobic culture. In the comparison of batch culture and fed-batch culture, the ethanol productivity in fed-batch culture is higher than batch culture. Similarly, the results of optimal operation strategy in simultaneous saccharification and fermentation process, the ethanol productivity during aerobic culture is also higher than anaerobic culture in different kinds of constraints.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1-1. 引言 1
1-2. 文獻回顧 3
1-2.1 纖維素材料酵素水解程序 4
1-2.2 酵母菌發酵程序 7
1-2.2.1 酵母菌發酵程序回顧 7
1-2.2.2 酵母菌發酵程序動力學 8
1-2.3同時糖化及發酵程序 10
1-3. 研究動機 11
1-4. 組織章節 12
第二章 程序模式與動態討論 13
2-1 引言 13
2-2 纖維素酵素水解程序介紹 14
2-2.1 纖維素酵素水解程序簡介 14
2-2.2纖維素酵素水解模式介紹 15
2-2.3模式參數討論 20
2-3 酵母菌發酵程序 40
2-3.1酵母菌發酵程序簡介 40
2-3.2酵母菌發酵程序模式介紹 41
2-3.3 抑制項討論 49
2-3.4 葡萄糖反應路徑最大比生長速率值討論 56
2-3.5 不同通氧條件下對模式的影響討論 63
2-4 同時糖化與發酵程序介紹 69
第三章 酵母菌發酵程序最佳化操作條件搜尋 81
3-1引言 81
3-2模擬退火( Simulated Annealing )法 82
3-2.1退火(Annealing)簡介 82
3-2.2 退火(Annealing)原理 83
3-2.3 模擬退火(Simulated Annealing,SA)演算法 87
3-2.4 模擬退火(Simulated Annealing,SA)演算法過程 91
3-3 批次發酵程序最佳化條件搜尋 94
3-4 饋料批次發酵程序最佳化條件搜尋 102
3-4.1 葡萄糖和酒精抑制作用的影響討論 102
3-4.2 無氧狀況饋料批次發酵程序最佳化操作條件搜尋 106
3-4.3 有氧狀況饋料批次發酵程序最佳化操作條件搜尋 123
第四章酵素水解程序與同時糖化發酵程序最佳化操作條件搜尋 131
4-1引言 131
4-2酵素水解程序最佳化條件搜尋 132
4-2.1 使用Solka Floc SW-40纖維素基質饋料批次程序最佳化條件搜尋 132
4-2.2 使用稻梗纖維基質饋料批次程序最佳化條件搜尋 155
4-3同時糖化發酵程序最佳化條件搜尋 162
4-3.1 無氧狀況下同時糖化發酵程序最佳化條件搜尋 162
4-3.2 有氧狀況下同時糖化發酵程序最佳化條件搜尋 175
第五章 結論 198
參考文獻 200
符號說明 204
作者簡介 208
[中文]
[1]張德明,蘇文君,周聖炘,王維麒,詹瑞裕,「稻梗纖維水解反應液之黏度變化與模式建立」,大葉大學生物產業科技學系與行政院原子能委員會核能所(2008)
[2]羅啟豪,「含不確定性之程序最適化探討」,東海大學化學工程研究所碩士論文(2006)
[英文]
[1]Aguilera, A., and Benitez, T., “Relationship between Growth, Frementation, and Respiration Rates in Saccharomyces cerevisiae: A Study Based on the Analysis of the Yield Ypx,” Biotechnology and Bioengineering, 32, 2, 240-244, 1988
[2]Asenjo, J.A., and Sun, W.H., and Spencer J.L., “Optimization of Batch Processes Involving Simultaneous Enzymatic and Microbial Reactions,” Biotechnology and Bioengineering, 37, 11, 1087-1094, 1991
[3]Bijkerk, A.H.E., and Hall, R.J., “A Mathematical Model for the Aerobic Growth of Saccharomyces cerevisiae,” Biotechnology and Bioengineering, 19, 2, 267-296, 1977
[4]Bideaux, C., and Alfenore, S., and Cameleyre, X., and Carole M.J., and Uribelarrea, J.L., and Guillouet, S.E., “Minimization of Glycerol Production during the High-Performance Fed-Batch Ethanolic Fermentation Process in Saccharomyces cerevisiae, Using a Metabolic Model as a Prediction Tool,” American Society for Microbiology, 72, 3, 2134-2140, 2006.
[5]Chaudhuri, P.D. and Diwekar, U.M., “Process Synthesis under Uncertainty: Apenalty Function Approach,” AIChE J., 43, 3, 742, 1996.
[6]Diwekar, U.M., “A Novel Sampling Approach to Combinatorial Optimization under Uncertainty,” Comput’l Potim & Appl. , 24, 335, 2003.
[7]Di Serio, M., and Aramo, P., and E. de Alteriis, and Tesser, R., and Santacesaria, E., “Quantitative Analysis of the Key Factors Affecting yeast Growth,” Ind. Eng. Chem. Res., 42, 5109-5116, 2003.
[8]Gan, Q., and Allen, S.J., and Taylor, G., “Kinetic Dynamics in Heterogeneous enzymatic hydrolysis of cellulose: and Overview, and Experimental Study and Mathematical Modeling,” Process Biochemistry, 38, 1003-1018, 2003.
[9]Howell, J.A. and Stuck, J. D., “Kinetics of Solka Floc Cellulose Hydrolysis by Trichoderma viride Cellulase,” Biotechnology and Bioengineering, 17, 6, 873-893, 1975.
[10]Huang, A.A., “Kinetic Studies on Insoluble Cellulose-Cellulase System,” Biotechnology and Bioengineering, 17, 10, 1421-1433, 1975.
[11]Hall, R.J., and Barford, J.P., “Simulation of the Integration of The Internal Energy Metabolism and the Cell Cycle of Saccharomyces cerevisiae,” Biotechnology and Bioengineering, 23, 8, 1763-1795, 1981
[12]Hannoun, B.J.M. and Stephanopoulos, G., “Growth and Fermentation Model for Alginate-Entrapped Saccharomyces cerevisiae,” Biotechnol. Prog. 6, 349-359, 1990.
[13]Hannoun, B.J.M. and Stephanopoulos, G., “Intrinsic Growth and Fermentation Rates of Alginate- Entrapped Saccharomyces cerevisiae,” Biotechnol. Prog. 6, 341-348, 1990.
[14]Jones K.D., and Kompala D.S., “Cybernetic Model of the Growth Dynamics of Saccharomyces cerevisiae in batch and continuous cultures,” Journal of Biotechnology, 71, 105-131, 1999.
[15]Kirkpatrick, S., and Gelatt, C.D., “M. P. Vecchi. Potimization by Simulated Annealing,” Science 13 May, 220, Number 4598, 1983.
[16]Kapadi, M.D., and Gudi, R.D., “Optimal Control of Fed-batch Fermentation Involving Multiple Feeds using Differential Evolution,” Process Biochemistry, 39, 1709-1721, 2004.
[17]Keulers, M., and Ariaans, L., and Soeterboek, R., and Giuseppin, M., “Facilitating Control of Fed-batch Fermentation Processes by Monitoring the Growth rates of Saccharomyces cerevisiae,” Bioengineering Laboratory, National Institute of Biosciences and Human Technology, 1-1,Higashi, Tsukuba, Ibaraki, 305 Japan.
[18]Monod, J., Reserches sur la Croissance des Cultures Bacteriennes. Hermann and Cie, Paris, 1942.
[19]Okazaki, M. and M. Moo-Young, “Kinetics of Enzymatic Hydrolysis of Cellulose: Analytical Description of a Mechanistic Model,” Biotechnology and Bioengineering, 20, 5, 637-663, 1978.
[20]Pammert, N.B., and Hall, R. J., and Barford, J.P., “Mathematical Modeling of Lag Phases in Mcrobial Growth,” Biotechnology and Bioengineering, 20, 3, 345-381, 1978
[21]Peitersen, N. and Ross, JR. E.W., “Mathematical Model for Enzymatic Hydrolysis and Fermentation of Cellulose by Trichoderma,” Biotechnology and Bioengineering, 21, 6, 997-1017, 1979.
[22]Parada, G., and Acevedo, F.,” On the Relation of Temperature and RNA Content to the Specific Growth Rate in Saccharomyces cerevisiae, “ Biotechnology and Bioengineering, 23, 8, 1763-1795, 1981
[23]Philippidis, G.P., and Smith, T.K., and Wyman, C.E., “Study of the enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol by the Simultaneous Saccharification and Fermentation Process,” Biotechnology and Bioengineering, 41, 9, 846-853, 1993
[24]Painton, L.A., and Diwekar, U.M., “Synthesizing Optimal Design Configuration for a Brayton Cycle Power Plant,” Comput. Chem. Eng., 18, 5, 639, 1994.
[25]Paalme, T., and Elken, R., and Vilu, R., and Korhola, M., “Growth efficiency of Saccharomyces cerevisiae on glucose/ethanol media with a smooth change in the dilution rate (A-stat),” Enzyme and Microbial Technology, 20, 174-181, 1997.
[26]Peri, S., and Karra, S., and Lee, Y.Y., and Nazmul, M., “Modeling Instrinsic Kinetics of Enzymatic Cellulose Hydrolysis,” Biotechnol. Prog., 23, 626-637, 2007.
[27]Ryu, D.D.Y., and Sun Lee, B., and Tassinari, T., and Macy, C., “Effect of Compression Milling on Cellulose Structure and on Enzymatic Hydrolysis Kinetics,” Biotechnology and Bioengineering, 24, 5, 1047-1067, 1982.
[28]Ramkrishna, D., A cybernetic perspective of microbial growth. In: Papoutsakis, E., Stephanopoulos, G.N., Blanch, H.W. (Eds), Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems. Americal Chemical Society, Washington, DC., 1982.
[29]Ramkrishna, D., and Kompala, D.S, and Tsao, G.T., “Are Microbes Optimal Strategists?,” biotech. Prog., 3, 121-126, 1987.
[30]Raghevendran, V., and Patil, K.R., and Olsson, L., and Nielsen. J., “Hap4ls Not Essential for Activation of Respiration at Low Specific Growth Rates in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, 281, 18, 2006.
[31]Sonnleitner, B., and Kappeli, O., “Growth of Saccharomyces cerevisiae is Controlled by its Limited Respiratory Capacity: Formulation and Verification of Hypothesis,” Biotechnology and Bioengineering, 28, 6, 927-937, 1986.
[32]Thatipamala, R., and Rohani, S., and Hill, G.A., “Effects of High Product and Substrate Inhibitions on the Kinetics and Biomass and Product Yields during Ethanol Batch Fermentation,” Biotechnology and Bioengineering, 40, 5, 289-297, 1992.
[33]Tsenoglou, C., “Erratum: Scaling concepts in suspension rheology,” J. Rheol., 34, 469, 1990.
[34]von Meyenburg, H.K., “Katabolit-Repression under Sprossungszklus von Saccharomyces cerevisiae,” Disser tation No. 4279. EIdg. Techn. Hochschule, Zurich, 1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔