|
[1] Huang, M. H., Mao, S., Feick, H. N., Yan, H.Q., Wu, Y. Y., Kind, H. N., Weber, E., Russo, R., Yang, P. D., "Room-Temperature Ultraviolet Nanowire Nanolasers." Science, 292, 1897 (2001) [2] Park, W. I., Kim, D. H., Jung, S. W., Yi, G. C., "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods." Appl. Phys. Lett., 22, 4232 (2002) [3] Li, C. P., Wang, N., Wong, S. P., Lee, C. S., Lee, S. T., "Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation." Adv. Mater., 3, 218 (2002) [4] Lai, M., Riley, D. J., "Templated Electrosynthesis of Zinc Oxide Nanorods." Chem. Mater., 18, 2233 (2006) [5] Guo, L., Ji, W. L., Xu, H. B., "Regularly shaped, single-crystal-line ZnO nanorods with wurtzite structure." J. Am. Chem. Soc., 124, 14864 (2002) [6] Zhang, J., Sun, L., Yin, J., Su, H., Liao, C., Yan, C., "Control of ZnO Morphology via a Sample Solution Route." Chem. Mater., 14, 4172 (2002) [7] Liu, B., Zeng, H. C., "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm." J. Am. Chem. Soc., 125, 4430 (2003) [8] Vayssieres, L., Keis, K., Lindquist, S. E., Hagfeldt, A., J. Phys. Chem. B, 105, 3350 (2001) [9] Vayssieres, L., "Growth of Arrayed Nanorods and Nanowires of ZnO from Zqueous Solutions." Adv. Mater., 5, 464 (2003) [10] Zhang, H., Yang, D. R., Ma, X. Y., Que, D. L., "Synthesis and Field Emission Characteristics of Bilayered ZnO Nanorod Array Prepared by Chemical Reaction." J. Phys. Chem. B, 109, 17055 (2005)
[11] Law, M., Greene, L. E., Johnson, J. C., Saykally, R., Yang, P. "Nanowire dye- sensitized solar cells." Nature Mater., 4, 455 (2005) [12] Wang, M., Ye, C. H., Ye, Z., Guo, M. H., Wang, H. X., Kong, M. G., Li, D. Z. "Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method." J. Cryst. Growth, 291, 334 (2006) [13] Sugunan, A., Warad, H. C., Boman, M., Dutta, J., "Zinc oxide nanowires in chemical bath on seeded substrates: Role of Hexamine." J. Sol-Gel Sci. Techm., 39, 49 (2006) [14] Govender, K. S., Boyle, D. S., Kenway, P. B., O’Brien, P., "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution." J. Mater. Chem., 14, 2575 (2004) [15] Fujishima, A., Honda, K., "Electrochemical Photolysis of Water at a Semiconductor Electrode."Nature 238, 37 (1972) [16] Bard, A. J., "Integrated chemical systems." New York (1994) [17] Linsebigler, A. L., Lu, G., Yate, J. T., "Photocatalysis on TiO2 surface: principles, mechanism and selected results." Chem. Rev., 95, 735 (1995) [18] Height, M. J., Pratsinis, S. E., "Ag-ZnO catalysts for UV-photodegradation of methylene blue." Appl. Catal. B:Environ., 63, 305 (2006) [19] Peng, F., Zhu, H. C., Wang, H. J., Yu, H., "Preparation of Ag-sensitized ZnO and its photocatalytic performance under simulated solar light." Korean J. Chem. Eng., 24, 1022 (2007) [20] Wu, J. J., Tseng, C. H., "Photocatalytic properties of nc-Au/ZnO nanorod composites." Appl. Catal. B:Environ., 66, 51 (2006) [21] Zheng, Q., Zheng, L., Zhan, Y. Y., Lin, X. Y., Wei, K. M., "Ag/ZnO Heterostructure Nanocrystal:Synthesis, Charaterization, and Photocatalysis." Inorg. Chem., 17, 6980 (2007) [22] Rajeshwar, K., "Hydrogen generation at irradiated oxide semiconductor -solution interfaces." J. Appl. Electrochem., 37, 765 (2007) [23] Nozik, A. J., "Photoelectrolysis of water using semiconducting TiO2 crystals." Nature, 257, 383 (1975) [24] Giordano, Z., Antonucci, V., Cavallaro, S., Lembi, R., Bart, J. C. J., "Photoassisted decomposition of water over modified rutile electrodes." Int. J. Hydrogen Energy, 7, 867 (1982) [25] Akikusa, J., Khan, S., "Phtoresponse and AC impedance characterization of n- TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell." Int. J. Hydrogen Energy, 22, 875 (1997) [26] Mishra, P. R., Shukla, P. K., Singh, A. K., Srivastava, O. N., "Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process." Int. J. Hydrogen Energy, 28, 1089 (2003) [27] Dong, W., Sun, Y., Lee, C. W., Hua, W. M., Lu, X. H., Shi, Y., Zhang, S. C., Chen, J. M., Zhao, D. Y.,“Controllable and Repeatable Synthesis of Thermally Stable Anatase Nanocrystal-SilicaComposites with Highly Ordered Hexagonal Mesostructures” J. Am Chem. Soc. 129, 13894 (2007) [28] Varghese, O. K., Grimes, C. A., "Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photonodes." Solar Energy Mater. & Solar Cells, 92, 374 (2008)
|