跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐偉倫
研究生(外文):Wei-lun Hsu
論文名稱:合成anthraquinone側基之新聚醯亞胺與聚醯胺及其性質研究
論文名稱(外文):Synthesis and Characterization of New Polyimides and Polyamides with Anthraquinone Pendent Groups
指導教授:陳燿騰
指導教授(外文):Yaw-Terng Chern
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:93
中文關鍵詞:聚醯亞胺聚醯胺
外文關鍵詞:PolyimidesPolyamidesAnthraquinone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是由含anthraquinone側基之新二胺單體,所製備的一系列聚醯亞胺。所合成聚醯胺酸的固有黏度範圍在0.56~1.05 dL/g,可溶型的聚醯亞胺黏度則為0.82 dL/g,這些聚醯亞胺可溶於m-cresol、
o-chlorophenol等溶劑中,其抗張強度於46~152 MPa之間,斷裂伸長率為4.5~11.3%之間,經由DMA測試所合成之聚醯亞胺的玻璃轉移溫度介於303~401℃之間,經由TGA測試所合成之聚醯亞胺的熱安定性,其10%熱重量損失,於空氣下介於543~574℃之間,於氮氣下介於551~574℃之間,於氮氣下600℃燃燒殘餘率介於77~83%之間。
經由UV/Visible測試所合成之聚醯亞胺之光學性質在溶液狀態下之最大吸收波長在316~321 nm之間,經由UV起始吸收波長(λonset)所得之能隙(Eg)範圍在3.0~3.05 eV之間。經由PL光譜顯示,其激發螢光在596~647nm之間,屬於紅光的範圍。
最後,藉由循環伏安計量法(CV) 測試所合成之聚醯亞胺之電化學性質,發現其半波電位在1.25~1.4 V之間;HOMO值在-5.61~-5.76eV之間;LOMO值在-2.56~-2.74eV之間。


另外由含anthraquinone側基之新二胺單體與芳香族二酸所合成的聚醯胺的固有黏度分別為0.42、1.02 dL/g。這些聚醯胺可溶於NMP、DMAc、m-cresol、o-chlorophenol等溶劑中,其抗張強度分別為49、62 MPa,斷裂伸長率分別為3、5%,經由DMA測試所合成之聚醯胺的玻璃轉移溫度分別為266、288℃,經由TGA測試所合成之聚醯胺的熱安定性,其10%熱重量損失,於空氣下分別為494、534℃,於氮氣下分別為496、512℃,於氮氣下600℃燃燒殘餘率分別為72、74%。
經由UV/Visible測試所合成之聚醯亞胺之光學性質在溶液狀態下之最大吸收波長分別為317、310 nm,經由UV起始吸收波長(λonset)所得之能隙(Eg)分別為2.92、2.93 eV。經由PL光譜顯示,其激發螢光分別在622、612nm,屬於紅光的範圍。
最後,藉由循環伏安計量法(CV) 測試所合成之聚醯亞胺之電化學性質,發現其半波電位分別為0.96、0.99 V;HOMO值分別為-5.32、-5.35eV;LOMO值分別為-2.4、-2.42eV。
A series of polyimides containing pendent anthraquinone groups were synthesized. The poly(amic-acid)s had inherent viscosities of 0.56~1.05 dL/g. The soluble polyimide had inherent viscosities of 0.82 dL/g. The polyimide were soluble in m-cresol、o-chlorophenol. The polymer films had tensile strengths of 46~152MPa, and elongation to break of 4.5~11.3%. The dynamic mechanical analysis (DMA) reveals that the glass transition temperatures ranged on 303∼401℃. In addition, the temperatures of 10% weight loss in air and nitrogen ranged on 543~574℃ and 551~574℃, respectively.
In the UV/Visible spectra, those polyimides had strong absorption bands from 316~321 nm in solution state. The energy band gaps of polymers calculated from the onset absorption wavelength of UV spectra in solution state were in the range from 3.0~3.05 eV. The photoluminescence spectra showed maximum bands ranged on 596~647nm in the red region.
In addition, cyclic voltammetry (CV) was employed to investigate the electrochemical behaviors of polyimides. The results showed that reversible oxidation redox couples at E1/2 ranged on 1.25~1.4 V. The HOMO and LOMO energy levels of the polyimides ranged on 5.61~5.76eV and 2.56~2.74eV, respectively.

A series of polyamides containing pendent anthraquinone groups were synthesized. The polyamides had inherent viscosities of 0.42 and 1.02 dL/g, respectively. The polyamide were soluble in N-Methyl-2-pyrrolidone (NMP) , N,N'-Dimethylacetamide (DMAc)、m-cresol、o-chlorophenol. The polymer films had tensile strengths of 49 and 62MPa, respectively and elongation to break of 3 and 5%, respectively. The dynamic mechanical analysis (DMA) reveals that the glass transition temperatures were 266 and 288℃, respectively. In addition, the temperatures of 10% weight loss in air and nitrogen were 494、534℃ and 496、512℃, respectively.
In the UV/Visible spectra, those polyamides had strong absorption bands at 317 and 310 nm in solution state, respectively. The energy band gaps of polymers calculated from the onset absorption wavelength of UV spectra in solution state were 2.92 and 2.93 eV, respectively. The photoluminescence spectra showed maximum bands were 622 and 612 nm in the red region, respectively.
In addition, cyclic voltammetry (CV) was employed to investigate the electrochemical behaviors of polyamides. The results showed that reversible oxidation redox couples at E1/2 were 0.96 and 0.99 V, respectively. The HOMO energy levels of the polyamides were -5.32、-5.35eV, respectively. The LOMO energy levels of the polyamides were -2.4 and -2.42eV, respectively.
致謝………………………………………………….………………….Ⅰ
摘要……………………………………………………………………Ⅱ
Abstract…………………………………………………………………Ⅳ
目錄……………………………………………………………………Ⅶ
Table索引………………………………………………………………Ⅹ
Figure索引…………………………………...………………………ⅩⅠ
第一章 緒論…………………………………………………………1
1-1聚醯亞胺簡介……………………………………………………1
1-2 聚醯亞胺的合成方法…………………………….………………2
1-3 聚醯亞胺的改質……………………………………….…………6
1-4 聚醯亞胺的應用…………………………………………………7
1-5聚醯胺的簡介…………………………………………………9
1-6聚醯胺的合成方式………………………………………………9
1-7聚醯胺的改質……………………………………………………14
1-8聚醯胺的應用……………………………………………………15
1-9研究動機與目的………………………………………………17
第二章實驗…………………………………………………………19
2-1實驗藥品…………………………………………………………19
2-2實驗程序…………………………………………………………23
2-2-1 單體製備…………………………………………………23
2-2-2聚醯亞胺的合成……………………………………………25
2-2-3聚醯胺的合成……………………………………………..27
2-3 單體鑑定及聚合物之物性與化性分析………………………28
第三章 結果與討論………………………………………………31
3-1 製備2-(bis(4-aminophenyl)amino)anthraquinone…...…31
3-1-1 單體之製備…………………………...……………………31
3-1-2 單體之鑑定………………………………...………………31
3-2聚醯亞胺的合成……………………………………………33
3-3聚醯亞胺的物性分析……………………………………………35
3-3-1溶解度測試……………………………….…………………35
3-3-2機械性質測試…………………………………….…………36
3-3-3熱性質測試……………………………………….…………37
3-3-4光學與電化學性質測試………………………….…………38
3-4聚醯胺的合成………………………………………………….40
3-4-1溶解度測試…………………………………….……………41
3-4-2機械性質測試………………………………………………42
3-4-3熱性質測試………………………………….………………42
3-4-4光學與電化學性質測試………………….…………………44
第四章 結論……………………………………………….…………46
4-1 聚醯亞胺…………………………………………….……………46
4-2 聚醯胺………………………………………………….…………47
參考文獻………………………………………………………………49
1.T.M. Bogert, R.R. Renshaw, J. Am. Chem. Soc. 30, 1140 (1908)
2.P.M. Heigenisher, N.J. Johnstin, ACS Symp.Ser132, American Chemical Society Washington, DC 3 (1980)
3.林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊 13, 29 (1999)
4.D. Wilson, H.D. Stenzenberger, P.M. Hergenrother, Polyimides Blackie & Son,London 1 (1990)
5.N. A. Adrova, M. I. Bessonov, L. A. Laius, A. P. Rudakov, Polyimide:A new class of thermally stable polymers(in Russian), Nauka, Leningrad1, (1968)
6.李伯毅,正型鹼性水溶液顯影感光性聚亞醯胺材料之研究,國立成功大學化工研究所碩士論文,(2002)
7.F.W. Harris, S.L-C. Hsu, High Perform. Polym. 1, 1, (1989)
8.Y. Oishi, M. Ishida, M.A. Kakimoto, Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 30, 1027 (1992)
9.A. C. Misra, G. Tesoro, G. Hougham, S. M. Pendharkar, Polymer 33, 1078 (1993)
10.W.G. Kim, A.S . Hay, Macromolecules 26, 5275 (1993)
11.H.J. Jeong, M.A. Kakinoto, Y.I. Mai, J. Polym. Sci. Part A:Polym. Chem. 29, 1691 (1991)
12.C.P. Yang, W.T. Chen, Macromolecules 26, 4865 (1993)
13.P.A. Falcigno, S. Jasne, M. King, J. Polym. Sci. Part A:Polym. Chem. 29, 1691 (1991)
14.H.G. Rogers, R.A. Gaudiana, W.C. Hollinsed, P.S. Kalyanaraman, J.S. Manello, C. McGoWan, R.A. Minns and R. Sahatjian, Macromolecules 18, 1085 (1985)
15.曾煒展,聚醯胺酸正型光阻劑之製備及特性探討,國立成功大學化工研究所碩士論文,(2001)
16.江選雅、張至芬,聚醯亞胺的合成及其在LCD上的應用,化工資訊月刊,Vol.13,NO.7,43(1999).
17.C.Harbordt, Ann.Chem.Pharm.,123, 287, (1862)
18.S.Gabriel, T.A.Maas, Ber.Dtsch.Chem.Ges.,32, 1266, (1899).
19.W.H.Carothers, U.S.Pat.2, 130,523, 1938 to E.I.du Pont de Nemours & Co.;C.A.,32,9498, (1938).
20.W.Michler, A.Zimmermann, Ber.Dtsch.Chem.Gesel., 14, 2177, (1881).
21.M.Frankel, Y.Liwschitzy, A.Zilkha, Experientia, 9, 179, (1953).
22.N.V.Mikhailov, V.I.Maiboroda, S.S.Nikolaeva, Vysokomol.Soedin., 2, 989, (1960).
23.T.M.Frunze, V.V.Korshak, V.V.Kurashev, P.A.Alievskii, Vysokomol.Soedin., 1, 1795, (1959).
24.P.W.Morgan, S.L.Kwolek, J.Polym.Sci., 62, 33, (1962).
25.E.L.Wittbecker, P.W.Morgan, J.Polymer Sci., 40, 289, (1959).
26.P.W.Morgan, S.L.Kwolek, J.Polymer Sci., 40, 299, (1959).
27.R.G.Beaman, P.W.Morgan,C.R.Kroller, E.L.Wittbeaker, E.E.Magat, J.Polymer Sci., 40,329, (1959).
28.J.R.Schaetgen, F.H.Koonntz, R.F.Tietz, J.Polmer Sci.,40, 377, (1959).
29.D.J.Lyman, S.L.Jung, J.Polymer Sci., 40, 407, (1959).
30.H.Sekiguchi, B.Coutin, Polyamides, Handbook of Polymer Synthesis Part A., Marcel Dekker, New York, 849, (1992).
31.C.P.Yang, W.T.Chen, Makromol.Chem.,194, 1959, (1993).
32.N.Yamazaki, F.Higashi, F.Higashi, J.Polym Sci.Polym Chem.Ed.,12, 2149, (1947).
33.N.Yamazaki, M.Matsumoto, F.Higashi, J.Polym. Sci, Polym.Chem.Ed., 13, 1373, (1975).
34.C.P.Yang, Y.Y.Yen, J.Polym, Sci, Polym.Chem., 30, 1885, (1992).
35.P.J.Perry, B.D.Wilson, Macromolecules, 26, 1503, (1993).
36.Y.Takahashi, M.Iijima, Y.Oishi, M.A.Kakimoto, Y.Imai, Macromolecules, 24, 3543, (1991).
37.Y.Oshi, M.A.Kakimoto, Y.Imai, Macromolecules, 21, 547, (1988).
38.H.K.Reimschuessel, J.Polym.Sci, Macro.Rev., 12, 65, (1977).
39.S.K.Gupta, D.Kunzru, A,Kumar, K.Agarwal, J.Appl.Polym.Sci., 28, 1626, (1983).
40.H.J.Jeong, M.A.Kakimoto, Y.Imai, J,Polym.Sci., Polym.Chem, 29, 767, (1991).
41.A.L.CimeciogLu, R.A.Weiss, J. Polym.Sci, Polym.Chem., 30, 1051, (1992).
42.C.P.Yang, J.H.Lin, J.Poym.Sci.Polym.Chem., 32, 423, (1994).
43.C.P.Yang, W.T.Chen, Makromol.Chem.,194, 1595, (1993).
44.V.V.Korshak, A.L.Rusanov, D.S.Tugishi, G.M.Cherkasova, Macromolecules, 5, 807, (1972).
45.F.Akutsu, T.Kataoka, K.Naruchi, M.Miura, K.Nagakubo, Polymer, 28, 1787, (1987).
46.Y.Imai, N.N.Malder, M. Kakimoto, J.Polym.Sci.,Polym.Chem.Ed.,23,797, (1985).
47.J.Y.Jadhav, J.Preston, W.R.Wrigbaum, J.Polym.Sci, Polym.Chem.Ed., 23, 1175, (1989).
48.Y.Delaviz, A.Gungor, J.E.McGrath, H.W.Gibson, Polymer, 34, 210, (1993).
49.M.Takayznagi, T.Katayose, J.Polym.Sci., Polym.Chem.Ed., 19,1133, (1981).
50.W.F.Hale, A.G.Farnham, R.N.Johnson, R.A.Clendining, J.Polym.Sci Polym.Chem.Ed.,5, 2399, (1967).
51.B.F.Malichenko, V.V.Sherikova, L.C.Chervgatsova, A.A.Kachan, G.I.Motryuk, Vysokomol.Soedin.Ser.B, 14, 423.
52.S.V.Vinogradova, Ya.S.Vygodskii, Russ.Chem.Rev., 42, 551, (1974).
53.S.V.Vinogradova, V.V.Korshak, J.Macromol.Sci.Cehm., 11, 45, (1974).
54.E.R. Hensema, M.E.R.Sena, M.E.H.V.Mulder, C.A.Smolders, J.polym. Sci., Part A:Polym.Chem.32, 527 (1994).
55.G.Maglio, R.Palumbo, M.Tortora, M.Trifuoggi, G.Varricchio ,Polymer 25, 6407 (1998).
56.S.-H.Hsiao, C.-H.Yu, J.Polym.Sci., Part A:Polym.Chem.36, 1847 (1998).
57.S.-H.Hsiao, L.-R.Dai, M.-S.He, J.Polym.Sci., Part A:Polym.Chem. 37,1169 (1999).
58.S.-H.Hsiao, J.-H.Chiou, J.Polym.Sci., Part A:Polym.Chem.39 ,2271 (2001).
59.S.-H.Hsiao, M.-S.He, Macromol.Chem.Phys.202, 3579 (2001).
60.S.-H.Hsiao, G.-S.Liou, Polym.J.34, 917 (2002).
61. Mehdipour-Ataei S, Arabi H, Bahri-Laleh N. Eur Polym J.42,2343 (2006).
62. 陳文祥、李名洋等人,高性能的工程塑膠,科學發展,2002年8月356期
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 聚醯胺酸正型光阻劑之製備及特性探討
2. 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究
3. 利用連續自我反覆反應(SSRR)合成聚醯胺-醯亞胺以及聚醯亞胺並應用於“窄分子量分布聚醯胺”之發展
4. 由不對稱的醚二胺衍生的聚醯亞胺與聚醯胺
5. 新型聚醯亞胺及聚醯胺之合成與物性研究
6. 利用電化學及理論計算探討新型含三苯胺之電致變色聚醯亞胺與聚醯胺之氧化機構
7. 合成新型含三苯胺及雜環結構之聚醯胺與聚醯亞胺及其性質研究
8. 具三甲氧基活化之三苯胺結構的新型聚醯胺及聚醯亞胺的合成與光致發光及電致變色性質研究
9. 具有2,4-二甲氧基取代三苯胺基團之聚醯胺及聚醯亞胺之合成與電致變色性質之研究
10. 主鏈具三苯胺結構及側鏈含脂肪胺基團之聚醯胺與聚醯亞胺的合成與性質探討
11. 具有二(4-第三丁基苯)胺基取代的三苯胺結構之電致變色聚醯胺與聚醯亞胺的研究
12. 主鏈含三苯胺結構及側鏈帶有3,6-雙(第三丁基)咔唑基團之新型芳香族聚醯胺及聚醯亞胺的合成與光電性質
13. 合成新型含三苯胺及金剛烷之聚醯亞胺與聚醯胺及其性質研究
14. 具有三氟甲基或甲基取代之三苯胺成分的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
15. 具有芳香氧取代基之三苯胺結構之芳香族聚醯胺及聚醯亞胺之合成與光電性質研究