跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周珈伃
研究生(外文):Chia-yu Chou
論文名稱:利用尿素和胍鹽酸探討N-carbamoyl-D-aminoacidamidohydrolase變性之研究
論文名稱(外文):Denaturation study of N-carbamoyl-D-amino acid amidohydrolase with urea and guanidine hydrochloride
指導教授:陳秀美陳秀美引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:蛋白質變性
外文關鍵詞:denaturation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用 urea 和 guanidine hydrochloride (GdnHCl) 對 C端帶有6×His tag的N-carbamoyl-D-amino acid amidohydrolase (DCaseH) 進行變性反應,以了解其結構變化及特性。為了探討其變性程度,分別以不同濃度的變性試劑在不同時間條件下反應,除利用HPLC分析其殘餘活性外,並以螢光光譜儀及動態雷射光散射 (DLS) 分析其結構變化。

殘餘活性分析結果顯示,DCaseH經過了4 M urea 變性處理20分鐘後,殘餘活性開始明顯地下降,而當urea 濃度為4.5 M時殘餘活性已降至原本的 50% ,在urea 濃度達6 M時已幾乎完全失活 。由螢光光譜分析結果,當DCaseH 經 4.3 M urea 變性處理 20分鐘後開始出現紅位移現象,且在以6 M urea 反應10分鐘後完全偏移。 DLS結果則發現其經過 urea變性處理30分鐘後,粒徑隨 urea濃度增加而有逐漸變大趨勢,但並無膠體狀的超大聚集體(colloid-emulsion) 產生,研判當DCaseH 利用 urea 做變性處理時較不激烈且為簡單的展開反應。在變性試劑GdnHCl研究的方面,當 DCaseH 經 GdnHCl 0.7 M 變性處理 5分鐘後,殘餘活性開始下降,在GdnHCl 達0.8 M 時衰減為 50%,而在GdnHCl 為 2 M時完全失活,表示GdnHCl對DcaseH的變性反應較urea來得強烈。 而當酵素以GdnHCl 1 M處理 10分鐘後,螢光光譜開始呈現紅位移現象,表酵素結構開始展開,此時DLS 結果顯示粒徑開始變化為超大粒徑(範圍為600 ~ 1000 nm),而當GdnHCl 濃度達 2 M時其粒徑則變回10~11 nm間。以結果顯示經GdnHCl變性反應的酵素,其結構一經展開後會立即變成膠體聚集的型態,最後在達一定程度的變性後再提高GdnHCl濃度,則聚集體會被再次溶解成為完全分散的小分子。
The purpose of this study is to investigate the denaturation of C-terminally His-tagged N-carbamoyl-D-amino acid amidohydrolase (DCaseH) with urea and guanidine hydrochloride (GdnHCl). The denaturation degrees were determined with residual activity, fluorescence, and dynamic laser scattering (DLS) analyses under different denaturant concentrations for various time. The activity assays showed that the residual activities of DCaseH started to significantly decline when the urea concentration was beyond 4 M for 20 min, reached a 50% value when the enzyme was treated with 4.5 M, and almost completely vanished right after the 6-M treatment. For the fluorescence analysis, a red-shift spectrum was first observed when DCaseH was treated with 4.3 M urea for 20 min, followed by a complete denaturation after a 10-min 6-M treatment. The DLS results showed that particle sizes gradually increased with urea concentrations for the 30 min treatment without the observation of any colloid-emulsion formation, suggesting that the inactivation of DCaseH with urea was mainly caused by a simple unfolding mechanism. As for the GdnHCl study, a dramatic declination of the residual activities was first observed at 0.7 M for a 5-min treatment, a 50% residue at 0.8 M, and a nearly complete inactivation at 2 M, indicating that GdnHCl is a much hasher denaturant for DCaseH than urea. The fluorescence analysis indicated that DCaseH started to unfold and consequently display a red-shift spectrum when it was simply treated with 1 M GdnHCl for 10 min. The DLS studies showed the particle sizes of DCaseH first increased to a high value (600 ~ 1000 nm) and then returned to a native size (10~11 nm) throughout the process of increasing GdnHCl concentrations, with an observation of formation of emulsion droplets which were subsequently dissolved, suggesting that both unfolding and aggregation took place during the denaturation of DCaseH with GdnHCl.
目錄

中文摘要………………………………………………………………………... I

英文摘要………………………………………………………………………... II


目錄………………………………………………………………………........... IV
表目錄………………………………………………………………………....... VII
圖目錄………………………………………………………………………....... VIII

第一章 緒論……………………………………………………………………. 1

第二章 文獻回顧………………………………………………………………. 3
2-1 D型胺基酸D-p-HPG……………………………………………………… 3
2-1-1 D型胺基酸…………………………………………………………... 3
2-2 DCase ……………………………………………………………………… 4
2-2-1 DCase的原生種來源及特性…………………………………......... 4
2-2-2 DCase的晶體結構和單體間作用力………………………………… 8
2-2-3 DCase的活性區域與胺基酸水解反應機制………………………… 11
2-3 變性試劑對酵素結構的影響……………………………………………... 12
2-3-1變性試劑對酵素催化活性的影響………………………………….. 22
2-3-2變性試劑對酵素結構變化的影響………………………………….. 24
2-3-3還原試劑DTT對酵素變性過程穩定性之影響……………………. 25
2-4 固定化金屬層析法(IMAC)……………………………………………….. 26
2-5 蛋白質結構分析方法……………………………………………………... 32
2-5-1螢光光譜儀(fluorescence spectroscopy)……………………………... 32
2-5-1-1原理………………………………………………………….. 32
2-5-1-2螢光光譜於蛋白質及胜肽結構分析上的應用…………….. 33
2-5-2動態雷射光散射(dynamic light scattering, DLS)…………………… 33
2-5-2-1原理………………………………………………………….. 34
2-5-2-2原理公式及應用…………………………………………….. 36

第三章 實驗目的................................................................................................. 40

第四章 實驗……………………………………………………………………. 41
4-1 實驗流程…………………………………………………………………... 41
4-2 實驗材料…………………………………………………………………... 41
4-2-1菌株....................................................................................................... 41
4-2-2蛋白質純化層析擔體、純化管柱及透析膜………………………… 41
4-2-3其他....................................................................................................... 41
4-3 實驗藥品…………………………………………………………………... 41
4-4 實驗設備…………………………………………………………………... 43
4-5 實驗步驟…………………………………………………………………... 44
4-5-1酵素之生產………………………………………………………….. 44
4-5-1-1 DCaseH原生種於E. coli BL21(DE3)之生產....................... 44
4-5-1-2 DCaseH原生種之純化…...………………………………… 45
4-5-2 DCaseH酵素之變性反應後與活性分析........................................... 45
4-5-2-1 DCaseH酵素之活性單位 (U)……………………………… 45
4-5-2-2 D-p-HPG及N-carbamoyl-D-p-HPG之HPLC分析條件...... 46
4-5-2-3純化DCaseH酵素之變性反應及活性分析.......................... 46
4-5-2-4配製不同濃度urea及D-p-HPG溶液以HPLC分析所得之
檢量線製作…………………………………………………..
47
4-5-2-5蛋白質之濃度分析…………………………………………. 47
4-5-3 DCaseH酵素之變性反應與螢光光譜儀分析……………………… 47
4-5-4 DCaseH酵素之變性反應與DLS分析…………………………….. 48

第五章 結果與討論 50
5-1 DCaseH酵素在不同變性試劑濃度及變性時間反應後之殘餘活性分析.. 50
5-2 DCaseH酵素受變性試劑反應後之結構分析……………………………. 52
5-2-1螢光光譜分析………………………………………………………. 52
5-2-2動態雷射光光譜(DLS)分析原生種DCaseH酵素………………… 59

第六章 結論…………. …………. …………. …………. …………. ………... 73

參考文獻…………. …………. …………. …………. …………. …………. ... 74

附錄…………. …………. …………. …………. …………. …………. ……... 79

表目錄

Table 2-1 生產DCase酵素之各個原生菌種之特性...................................... 9
Table 5-1 DCaseH純化酵素在不同urea濃度及各變性反應時間後之殘餘活性分析.......................................................................................... 53
Table 5-2 DCaseH純化酵素在不同GdnHCl濃度及各變性反應時間後之殘餘活性分析.................................................................................. 54
Table 5-3 DCaseH純化酵素在不同urea濃度下之粒徑大小及分佈分析... 68
Table 5-4 DCaseH純化酵素在不同GdnHCl濃度下之粒徑大小及分佈分析....................................................................................................... 69













圖目錄

Figure 2-1 Steps involved in industrial amoxycllin production…………........ 5
Figure 2-2 Chemo-enzymatic or enzymatic production of D-amino acid........ 6
Figure 2-3 Schematic ribbon diagram of the DCase homotetramer structure viewed along the Xm axis from Agrobacterium sp. strain KNK712………………………………………………………….. 13
Figure 2-4 (a) Front view of the protein fold of DCase, (b)Topological diagram of the protein fold of DCase…………………………….. 14
Figure 2-5 (a)Ribbon representation of the homotetrameric structure of DCase from Agrobacterium radiobacter CCRC 14924, (b) The subunit of DCase, (c) Topology of subunit A…………………….. 15
Figure 2-6 Structural anaylsis of three catalytically important residues His129、His144 and His215 as identified by mutagenesis……………. 17
Figure 2-7 Sequence alignment of DCase……………………………………. 18
Figure 2-8 (a) Superimposed structures between C172S-DCase and C172S-HPG enzyme-substrate complex, (b) Schematic diagram of HPG bound to C172S………………………………………….. 19
Figure 2-9 The model of the DCase-N-carbamoyl-D-phenylalanine complex…………………………………………………………... 20
Figure 2-10 Proposed mechanism of N-carbamyl-D-amino acid hydrolysis….. 21
Figure 2-11 Unfolding of a monomeric protein……………………………….. 27
Figure 2-12 (a) Molecular formulas of urea and GdnHCl, (b) Urea induces the unfolding of a protein composed of α-helices and β-sheets, (c) The protein disulfide bonds would be broken following the reaction with urea and mercaptoethanol………………………….. 28
Figure 2-13 Schematic depiction of protein…………………………………… 30
Figure 2-14 Schematic representation of the urea-induced structural and functional changes in FabG………………………………………. 31
Figure 2-15 DTT is highly efficient at reducing disulfides, since a single molecule can reduce the intermediate mixed disulfide by forming a ring tructure…………………………………………………….. 31
Figure 2-16 (a) TALON of CO2+ metal chelated affinity resin, (b) structure of imidazole and histidine………………………………………… 32
Figure 2-17 光照射發光分子之部份能階圖………………………………… 35
Figure 2-18 (a) The propagated wave from light scattered by particles, (b) Curve of current (I) as a function of time (t)……………………... 38
Figure 2-19 The light from the source was reflected perpendicularly to the sample…………………………………………………………….. 39
Figure 2-20 Illustration of Stoke’s law for the fictional force exerted on spherical objects with very small Reynolds numbers (e.g., very small particles) in a continuous viscous fluid…………………….. 39
Figure 4-1 實驗流程圖..................................................................................... 42
Figure 4-2 (a)以HPLC分析20 mM之D-p-HPG(滯留時間為1.774 min)之圖圖譜, (b)以HPLC分析1 M urea(滯留時間為1.776 min)之圖譜 49
Figure 5-1 DCaseH純化酵素和不同濃度變性試劑反應後殘餘活性對各變性反應時間作圖。(a) Urea、(b) GdnHCl……………………. 55
Figure 5-2 DCaseH純化酵素和變性試劑反應不同時間後殘餘活性對各變性試劑濃度作圖。(a) Urea、(b) GdnHCl……………………. 56
Figure 5-3 DCaseH純化酵素和變性試劑反應不同時間後的結構展開分率(fU)分析。(a) Urea、(b) GdnHCl………………………………. 57
Figure 5-4 當DCaseH純化酵素和低於(含) 4.0 M urea進行變性反應後,螢光光譜強度隨變性試劑濃度升高而遞減,並無任何位移發生………………………………………………………………… 60
Figure 5-5 當DCaseH純化酵素和高於(含) 4.2 M urea進行變性反應後,螢光光譜開始呈現紅位移狀態(red shift)………………………. 61
Figure 5-6 當DCaseH純化酵素和低於(含) 0.9 M GdnHCl進行變性反應後,螢光光譜強度隨變性試劑濃度升高而遞減,並無任何位移發生……………………………………………………………. 63
Figure 5-7 當DCaseH純化酵素和高於(含) 1 M GdnHCl進行變性反應後,螢光光譜開始呈現紅位移狀態(red shift)………………….. 64
Figure 5-8 不同變性反應時間後之CSM值和變性試劑濃度之關係 65
Figure 5-9 以DLS分析DCaseH純化酵素於不同濃度urea變性反應後30 min之粒徑變化.............................................................................. 70
Figure 5-10 熱處理溫度對不同突變酵素之熱失活表觀(apparent)速率常數的影響…………………………………………………………… 71
Figure 5-11 以DLS分析DCaseH純化酵素於不同濃度GdnHCl變性反應後30 min之粒徑變化…………………………………………… 72
何晟偉,“親和標籤對N-carbamoyl-D-amino acid amidohydrolase之生產、純化與活性影響之探討”,台灣科技大學化學工程技術研究所碩士論文,2001

杜慶璋,”體制素內氫鍵之研究:螢光光譜法”,朝陽科技大學應用化學系碩士論文,2002

林昆穎,“以基因工程技術增進N-carbamoyl-D-amino acid amidohydrolase之溶解度及其胞外復性研究”,台灣科技大學化學工程技術研究所碩士論文,2001

劉瑞雯,“N-carbamoyl-D-amino acid amidohydrolase基因之選殖、生產表現與純化”,台灣科技大學化學工程技術研究所碩士論文,1999

謝育卿,“熱處理對N-carbamoyl-D-amino acid amidohydrolase及其突變酵素之特性與結構影響之分析”,台灣科技大學化學工程技術研究所碩士論文,2006

羅森林,“日本血吸蟲穀胱甘呔轉移酵素及其定點突變種之穩定性研究”,台灣科技大學化學工程技術研究所碩士論文,1998

蘇惠玲,“Agrobacterium radiobacter發酵生產N-氨甲醯D-胺基酸水解酵素及其特性研究”,台灣科技大學化學工程技術研究所碩士論文,1996

Buson, A., Negro, A., Grassato, L., Tagliaro, M., Basaglia, M., Grandi, C., Fontana, A., and Nuti, P. M., “Identification, sequencing and mutangensis of the gene for a D-carbamoylase from Agrobacterium radiobacter”, FEMS Microbiol. Lett., 145, 55-62, 1996

Chen, Y. and Barkley, D., ”Toward understanding tryptophan fluorescence in protein“, Biol. Chem., 37, 9976-9982, 1998

Chen, C. Y., Chiu, W. C., Liu, J. S., Hsu, W. H., and Wang, W. C., “Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-
amino acid amidohydrolase”, J. Biol. Chem., 278, 26194-26201, 2003a

Chen, H. M., Ho, C. W., Liu, J. W., Lin, K. Y., Wang, Y. T., Lu, C. H., and Liu, H. L., “ Production, IMAC purification, and molecular modeling of N-carbamoyl-D-amino acid amidohydrolase C-terminally fused with a six-His peptide”, Biotechnol. Prog., 19, 864-873, 2003b

Chen, H. M., Lin, K. Y., and Lu, C. H.,“Refolding and activation of recombinant N-carbamoyl-D-amino acid amidohydrolase from Escherichia coli inclusion bodies”, Process Biochem., 40, 2135-2141, 2005

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. and Darnell, J. E., “Chapter 3, Protein unfolding and aggregation”, in Molecular Cell Biology, 4th Edition, W.H. Freeman and Company, San Francisco, 55, 1999

Grifantini, R., Pratesi, G., and Grandi, G., “Topological mapping of the cysteine residues of N-carbamoyl-D-amino acid amidohydrolase and their role in enzymatic activity”, J. Biol. Chem., 271, 9326-9331, 1996

Hermanson, G. T., “Part I, Chapter 1.4.1: Introduction of sulfhydryl residues (thiolation)”, in Bioconjugate Technology, Academic Press, Inc., New York, 76-87, 1996

Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S., “Screening, characteration, and cloning of the gene for N-carbamoyl-D-amino acid amidohydrolase from thermotolerant soil bacteria”, Biosci. Biotechnol. Biochem., 62, 882-886, 1998

Inui, T., Ohkubo, T., Emi, M., Irikura, D., Hayaishi, O., and Urade, Y. “Characterization of the unfolding process of lipocalin-type prostaglandin D synthase”, J. Biol. Chem., 278, 2845-2852, 2002

Karmodiya, K. and Surolia, N. “A unique and differential effect of denaturants on cofactor mediated activation of Plasmodium falciparum β-ketoacyl-ACP reductase”, Proteins, 70, 528-538, 2007

Kim, G. J. and Kim, H. S., “Optimization of the enzymatic synthesis of D-p-hydroxy-phenylglycine from D,L-5-substituted hydantoin using D-hydantoinase and N-carbamoylase ”, Enzyme Microb. Technol., 17, 63-67, 1995

Lee, H. and Zhang, Y., “Site-directed mutagenesis of the cysteine residues in the Pichiastipitis xylose reductase”, FEMS Microbil. Lett., 147, 227-232, 1996

Liang, J., Ruaan, R. C. and Hsieh, H. J., “Refolding of partially and fully denatured lysozymes”, Biotechnol. Lett., 29, 723-729, 2007

Lilie, H., Schwarz, E. and Rudolph, R.“Advances in refolding of proteins produced in E. coli”, Curr. Opinion Biotechnol., 9, 497-501, 1998.

Louwrier, A. and Knowles, C. J., “The purification and characterization of a novel D-(-)-specific carbamoylase enzyme from an Agrobacterium sp.”, Enzyme Microb. Technol., 19, 562-571, 1996

Louwrier, A. and Knowles, C. J., “The aim of industrial enzymatic amoxicillin production: characterization of a novel carbamoylase enzyme in the form of a crude, cell-free extract”, Biotechnol. Appl. Biochem., 25, 143-149, 1997

Moller, A., Syldatk, C., Schulze, M. and Wagner, F., “Stereo-and substrate-specificity of a D-hydantoinase and a D-N-carbamyl-amino acid amidohydrolase of Arthrobacter crystallopoietes AM2”, Enzyme Microb. Technol., 10, 618-625, 1988

Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi, S., Sato, M. and Tsukihara, T., “Crystal structure of N-carbamoyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases”, Structure, 8, 729-739, 2000

Olivieri, R., Fascetti, E., Angelini, L., and Degen , L., “Microbial transformation of racemic hydantoins to D-amnio acids”, Biotechnol. Bioeng., 23, 2173-2183, 1981

Ogawa, J., Shimizu, S. and Yamada, H., “N-carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c purification and characterization”, Eur. J. Biochem., 212, 685-691, 1993

Ogawa, J., Chung, C., Hida, S., Yamada, H. and Shimizu, S., “Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization”, J. Biotechnol., 38, 11-19, 1994

Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. and Thrnton, J. M., “CATH-a hierarchic classification of protein domain structures”, Structure, 5, 1093-1108, 1997

Parisi, M., Mazzini, A., Sorbi, R. T., Ramoni, R., Grolli, S. and Favilla, R., “Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: equilibrium studies at neutral pH”, Biochim. Biophys. Acta, 1652, 115-125, 2003

Phillies, G.. D. J., “Quasi-elastic light scattering”, Anal. Chem., 62, 1049A-1057A, 1990

Porath, J., Carlsson, J., Olsson, I. and Belfrage, G., “Metal chelate affinity chromatography, a new approach to protein fractionation”, Nature, 258, 598-599, 1975

Sareen, D., Sharma, R., Nandanwar, H. S. and Vohra, R. M., “Two-step purification of D(-)-specific carbamoylase from Agrobacterium tumefaciens AM 10”, Protein Expr. Purif., 21, 170-175, 2001

Skoog, D. A., Holler, F. J. and Nieman, T.A., ”Chapter 9, Photoluminescence spectroscopy”, in Principles of instrumental analysis, 5th Edition, Harcourt Brace & Company, New York, 355-379, 1998

Stryer, L.,“Chapter 2, Introduction to protein structure and function”, in Biology Chemistry, 2nd Edition, W.H. Freeman and Company, San Francisco, 14-15, 1981

Venkatesu, P., Lee, M.-J., and Lin, H.-M.“Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state”, Arch. Biochem. Biophys., 466, 106-115, 2007

Wang, W. C., Hsu, W. H., Chien, F. T., and Chen, C. Y., “Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft”, J. Mol. Biol., 306, 251-261, 2001

Yip, T. T., Nakagawa, Y., and Porath, J., “Evaluation of the interaction of peptides with Cu(II), Ni(II) and Zn(II) by high-performance immobilized metal ion affinity chromatography”, J. Anal. Biol. Chem., 183, 159-171, 1989

Yokozeki, K. and Kubota, K., “Mechanism of asymmetric production of D-amino acids from the corresponding hydantoins by Pseudomonas sp.”, Agric. Biol. Chem., 51, 721-728, 1987
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊